二叉树是由根节点,左子树,右子树组成,左子树和友子树分别是一个二叉树。
这篇文章主要在JS中实现二叉树的遍历。

一个二叉树的例子

var tree = {
 value: 1,
 left: {
  value: 2,
  left: {
   value: 4
  }
 },
 right: {
  value: 3,
  left: {
   value: 5,
   left: {
    value: 7
   },
   right: {
    value: 8
   }
  },
  right: {
   value: 6
  }
 }
}

广度优先遍历
广度优先遍历是从二叉树的第一层(根结点)开始,自上至下逐层遍历;在同一层中,按照从左到右的顺序对结点逐一访问。
实现:
<!--more-->
使用数组模拟队列。首先将根节点归入队列。当队列不为空的时候,执行循环:取出队列的一个节点,如果该结点的左子树为非空,则将该结点的左子树入队列;如果该结点的右子树为非空,则将该结点的右子树入队列。
(描述有点不清楚,直接看代码吧。)

var levelOrderTraversal = function(node) { 
 if(!node) {  
  throw new Error('Empty Tree')
 } 
 var que = []
 que.push(node) 
 while(que.length !== 0) {
  node = que.shift()  
  console.log(node.value)  
  if(node.left) que.push(node.left)  
  if(node.right) que.push(node.right)
 }
}

递归遍历
觉得用这几个字母表示递归遍历的三种方法不错:
D:访问根结点,L:遍历根结点的左子树,R:遍历根结点的右子树。
先序遍历:DLR
中序遍历:LDR
后序遍历:LRD

顺着字母表示的意思念下来就是遍历的顺序了 ^ ^

这3种遍历都属于递归遍历,或者说深度优先遍历(Depth-First Search,DFS),因为它总
是优先往深处访问。

先序遍历的递归算法:

var preOrder = function (node) { 
 if (node) {  
  console.log(node.value);
  preOrder(node.left);
  preOrder(node.right);
 }
}

中序遍历的递归算法:

var inOrder = function (node) { 
 if (node) {
  inOrder(node.left);  
  console.log(node.value);
  inOrder(node.right);
 }
}

后序遍历的递归算法:

var postOrder = function (node) { 
 if (node) {
  postOrder(node.left);
  postOrder(node.right);  
  console.log(node.value);
 }
}

非递归深度优先遍历
其实对于这些概念谁是属于谁的我也搞不太清楚。有的书里将二叉树的遍历只讲了上面三种递归遍历。有的分广度优先遍历和深度优先遍历两种,把递归遍历都分入深度遍历当中;有的分递归遍历和非递归遍历两种,非递归遍历里包括广度优先遍历和下面这种遍历。个人觉得怎么分其实并不重要,掌握方法和用途就好 :)

刚刚在广度优先遍历中使用的是队列,相应的,在这种不递归的深度优先遍历中我们使用栈。在JS中还是使用一个数组来模拟它。
这里只说先序的:
额,我尝试了描述这个算法,然而并描述不清楚,按照代码走一边你就懂了。

var preOrderUnRecur = function(node) { 
 if(!node) {  
  throw new Error('Empty Tree')
 } 
 var stack = []
 stack.push(node) 
 while(stack.length !== 0) {
  node = stack.pop()  
  console.log(node.value)  
  if(node.right) stack.push(node.right)  
  if(node.left) stack.push(node.left)
 }
}

看了这一篇,找到了非递归后序的算法,所以在这里把非递归的遍历方法补充完整。
非递归中序
先把数的左节点推入栈,然后取出,再推右节点。

var inOrderUnRecur = function(node) { 
 if(!node) {  
  throw new Error('Empty Tree')
 } 
 var stack = [] 
 while(stack.length !== 0 || node) {  
  if(node) {
   stack.push(node)
   node = node.left
  } else {
   node = stack.pop()   
   console.log(node.value)
   node = node.right
  }
 }
}

非递归后序(使用一个栈)
这里使用了一个临时变量记录上次入栈/出栈的节点。思路是先把根节点和左树推入栈,然后取出左树,再推入右树,取出,最后取跟节点。

var posOrderUnRecur = function(node) { 
 if(!node) {  
  throw new Error('Empty Tree')
 } 
 var stack = []
 stack.push(node) 
 var tmp = null
 while(stack.length !== 0) {
  tmp = stack[stack.length - 1]  
  if(tmp.left && node !== tmp.left && node !== tmp.right) {
   stack.push(tmp.left)
  } else if(tmp.right && node !== tmp.right) {
   stack.push(tmp.right)
  } else {   
   console.log(stack.pop().value)
   node = tmp
  }
 }
}

非递归后序(使用两个栈)
这个算法的思路和上面那个差不多,s1有点像一个临时变量。

var posOrderUnRecur = function(node) { 
 if(node) {  
  var s1 = []  
  var s2 = []
  s1.push(node)  
  while(s1.length !== 0) {
   node = s1.pop()
   s2.push(node)   
   if(node.left) {
    s1.push(node.left)
   }   
   if(node.right) {
    s1.push(node.right)
   }
  }  
  while(s2.length !== 0) {   
   console.log(s2.pop().value);
  }
 }
}

Morris遍历
这个方法即不用递归也不用栈实现三种深度遍历,空间复杂度为O(1)(这个概念我也不是特别清楚org)
(这三种算法我先放着,有空再研究)
Morris先序:

var morrisPre = function(head) { 
 if(!head) {  
  return
 } 
 var cur1 = head,
   cur2 = null
 while(cur1) {
  cur2 = cur1.left  
  if(cur2) {   
   while(cur2.right && cur2.right != cur1) {
    cur2 = cur2.right
   }   
   if(!cur2.right) {
    cur2.right = cur1    
    console.log(cur1.value)
    cur1 = cur1.left    
    continue
   } else {
    cur2.right = null
   }
  } else {   
    console.log(cur1.value)
  }
  cur1 = cur1.right
 }
}

Morris中序:

var morrisIn = function(head) { 
 if(!head) {  
  return
 } 
 var cur1 = head,
   cur2 = null
 while(cur1) {
  cur2 = cur1.left  
  if(cur2) {   
   while(cur2.right && cur2.right !== cur1) {
    cur2 = cur2.right
   }   
   if(!cur2.right) {
    cur2.right = cur1
    cur1 = cur1.left    
    continue
   } else {
    cur2.right = null
   }
  }  
  console.log(cur1.value)
  cur1 = cur1.right
 }
}

Morris后序:

var morrisPost = function(head) { 
 if(!head) {  
  return
 } 
 var cur1 = head,
   cur2 = null
 while(cur1) {
  cur2 = cur1.left  
  if(cur2) {   
   while(cur2.right && cur2.right !== cur1) {
    cur2 = cur2.right
   }   
   if(!cur2.right) {
    cur2.right = cur1
    cur1 = cur1.left    
    continue
   } else {
    cur2.right = null
    printEdge(cur1.left)
   }
  }
  cur1 = cur1.right
 }
 printEdge(head)
}
var printEdge = function(head) { 

以上就是本文的全部内容,希望对大家的学习有所帮助。

标签:
JS二叉树遍历,JS二叉树,JS遍历

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“JS中的二叉树遍历详解”

暂无“JS中的二叉树遍历详解”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。