从第一台计算机问世到现在计算机硬件技术已经有了很大的发展。不管是现在个人使用的PC还是公司使用的服务器。双核,四核,八核的CPU已经非常常见。这样我们可以将我们程序分摊到多个计算机CPU中去计算,在过去并行化需要线程的低级操作,难度很大,在.net4.0中的增强了对并行化的支持,使得这一切变得非常简单 。本次我从以下几个方面大家讲以下.NET 并行
1. 数据并行
2. 任务并行
3. 并行Linq
4. 任务工厂
5. 注意事项
本次主要给大家讲一下数据并行 废话不说,下面开始了
数据并行其实就是指对原集合或者数组中的数据进行划区之后分摊到多个CPU或者多个线程执行相同的操作 在 .net中的 System.Threading.Tasks 提供了对数据并行的支持类 , Parallel.For,Parallel.ForEach和我们经常的使用的for 和foreach 十分的相似,你不用创建线程队列,在基本的循环中你不用使用锁。这些.net 会帮你处理,你只需要关注你自己的业务 那下面我们就来看看 Parallel.For 和 Parallel.ForEach 是如何使用的
"codetitle">复制代码 代码如下:
Parallel.For(0, 100, i => {
dosameting()
});
上面的例子是不是和我们经常使用的for循环的影子。 说一下 Parallel.For 的第三个参数Action<int>类型的委托 不管这个委托的参数是0个还是多少个他的返回植都是void,那么怎么样才能获取到Parallel.For 中的的返回值了,下面的例子将演示如何使用线程本地变量来存储和检索由 for 循环创建的每个单独任务中的状态 通过使用线程本地数据,您可以避免将大量的访问同步为共享状态的开销。 在任务的所有迭代完成之前,您将计算和存储值,而不是写入每个迭代上的共享资源。 然后,您可以将最终结果一次性写入共享资源,或将其传递到另一个方法
"codetitle">复制代码 代码如下:
Parallel.For<long>(0, listLength, () => 0, (j, loop, subsum) =>
{
subsum += lista[j];
return subsum;
}, (x) => Interlocked.Add(ref sum, x));
"codetitle">复制代码 代码如下:
Parallel.For<long>(0, listLength, () => 0, (j, loop, subsum) =>
{
if (subsum > 20000)
{
loop.Break();
}
subsum += lista[j];
return subsum;
}, (x) => Interlocked.Add(ref sum, x));
"codetitle">复制代码 代码如下:
Parallel.ForEach(lista, i => { dosameting(); });
不知道大家在这个地方有没有看到foreach的影子。其实上面的例子中的ForEach方法的最后一个输入参数是 Action<int>委托,当所有循环完成时,方法将调用该委托。这个地方和前面的Parallel.For 是一样的。那么我们要如何获得返回值了和上面的For是非常相似,我依然以上面数组求和为例
复制代码 代码如下:
Parallel.ForEach<int, long>(lista, () => 0, (j, loop, subsum) =>
{
if (subsum > 20000)
{
loop.Break();
}
subsum += lista[j];
return subsum;
}, (x) => Interlocked.Add(ref sum, x));
"//img.jbzj.com/file_images/article/201312/20131223152220363.jpg">
附上相关的代码给大家参考
复制代码 代码如下:
int listLength = 10000000;
List<int> listTask = new List<int>();
List<int> list = new List<int>();
Stopwatch watch1 = Stopwatch.StartNew();
Parallel.For(0, listLength, i => {
Random r = new Random(100);
listTask.Add(r.Next());
});
Console.WriteLine("并行耗时:" + watch1.ElapsedMilliseconds );
Stopwatch watch2 = Stopwatch.StartNew();
for (int i = 0; i < listLength; i++)
{
Random r = new Random(100);
list.Add(r.Next());
}
Console.WriteLine("非并行耗时:" + watch2.ElapsedMilliseconds );
并行计算,数据并行
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]