1、余弦相似度
余弦相似度衡量的是2个向量间的夹角大小,通过夹角的余弦值表示结果,因此2个向量的余弦相似度为:
余弦相似度的取值为[-1,1],值越大表示越相似。
向量夹角的余弦公式很简单,不在此赘述,直接上代码:
def cosVector(x,y): if(len(x)!=len(y)): print('error input,x and y is not in the same space') return; result1=0.0; result2=0.0; result3=0.0; for i in range(len(x)): result1+=x[i]*y[i] #sum(X*Y) result2+=x[i]**2 #sum(X*X) result3+=y[i]**2 #sum(Y*Y) #print(result1) #print(result2) #print(result3) print("result is "+str(result1/((result2*result3)**0.5))) #结果显示 cosVector([2,1],[1,1])
一个计算二维数组余弦值的例子:
#求余弦函数 def cosVector(x,y): if(len(x)!=len(y)): print('error input,x and y is not in the same space') return; result1=0.0; result2=0.0; result3=0.0; for i in range(len(x)): result1+=x[i]*y[i] #sum(X*Y) result2+=x[i]**2 #sum(X*X) result3+=y[i]**2 #sum(Y*Y) #print("result is "+str(result1/((result2*result3)**0.5))) #结果显示 return result1/((result2*result3)**0.5) #print("result is ",cosVector([2,1],[1,1])) #计算query_output(60,20)和db_output(60,20)的余弦值,用60*1的向量存储 cosResult= [[0]*1 for i in range(60)] for i in range(60): cosResult[i][0]=cosVector(query_output[i], db_output[i]) print(cosResult) -------------------------------------------------------------------------------------------- #计算query_output和db_output的余弦值,用60*1的向量存储 rows=query_output.shape[0] #行数 cols=query_output.shape[1] #列数 cosResult= [[0]*1 for i in range(rows)] for i in range(rows): cosResult[i][0]=cosVector(query_output[i], db_output[i]) #print(cosResult) #将结果存入文件中,并且一行一个数字 file=open('cosResult.txt','w') for i in cosResult: file.write(str(i).replace('[','').replace(']','')+'\n') #\r\n为换行符 file.close()
补充:python实现余弦近似度
方法一:
def cos(vector1,vector2): dot_product = 0.0 normA = 0.0 normB = 0.0 for a,b in zip(vector1,vector2): dot_product += a*b normA += a**2 normB += b**2 if normA == 0.0 or normB==0.0: return None else: return 0.5 + 0.5 * dot_product / ((normA*normB)**0.5) #归一化 <span style="font-family: Arial, Helvetica, sans-serif;">从[-1,1]到[0,1]</span>
方法二:
num = float(A.T * B) #若为行向量则 A * B.T denom = linalg.norm(A) * linalg.norm(B) cos = num / denom #余弦值 sim = 0.5 + 0.5 * cos #归一化 从[-1,1]到[0,1]
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
标签:
Python,向量,余弦值
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python 求向量的余弦值操作”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年04月06日
2025年04月06日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]