1 椭圆肤色检测模型
原理:将RGB图像转换到YCRCB空间,肤色像素点会聚集到一个椭圆区域。先定义一个椭圆模型,然后将每个RGB像素点转换到YCRCB空间比对是否再椭圆区域,是的话判断为皮肤。
YCRCB颜色空间
椭圆模型
代码
def ellipse_detect(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) skinCrCbHist = np.zeros((256,256), dtype= np.uint8 ) cv2.ellipse(skinCrCbHist ,(113,155),(23,15),43,0, 360, (255,255,255),-1) YCRCB = cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB) (y,cr,cb)= cv2.split(YCRCB) skin = np.zeros(cr.shape, dtype=np.uint8) (x,y)= cr.shape for i in range(0,x): for j in range(0,y): CR= YCRCB[i,j,1] CB= YCRCB[i,j,2] if skinCrCbHist [CR,CB]>0: skin[i,j]= 255 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) dst = cv2.bitwise_and(img,img,mask= skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout",dst) cv2.waitKey()
效果
2 YCrCb颜色空间的Cr分量+Otsu法阈值分割算法
原理
针对YCRCB中CR分量的处理,将RGB转换为YCRCB,对CR通道单独进行otsu处理,otsu方法opencv里用threshold
代码
def cr_otsu(image): """YCrCb颜色空间的Cr分量+Otsu阈值分割 :param image: 图片路径 :return: None """ img = cv2.imread(image, cv2.IMREAD_COLOR) ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y, cr, cb) = cv2.split(ycrcb) cr1 = cv2.GaussianBlur(cr, (5, 5), 0) _, skin = cv2.threshold(cr1,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) cv2.namedWindow("image raw", cv2.WINDOW_NORMAL) cv2.imshow("image raw", img) cv2.namedWindow("image CR", cv2.WINDOW_NORMAL) cv2.imshow("image CR", cr1) cv2.namedWindow("Skin Cr+OTSU", cv2.WINDOW_NORMAL) cv2.imshow("Skin Cr+OTSU", skin) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("seperate", cv2.WINDOW_NORMAL) cv2.imshow("seperate", dst) cv2.waitKey()
效果
3 基于YCrCb颜色空间Cr, Cb范围筛选法
原理
类似于第二种方法,只不过是对CR和CB两个通道综合考虑
代码
def crcb_range_sceening(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) ycrcb=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB) (y,cr,cb)= cv2.split(ycrcb) skin = np.zeros(cr.shape,dtype= np.uint8) (x,y)= cr.shape for i in range(0,x): for j in range(0,y): if (cr[i][j]>140)and(cr[i][j])<175 and (cr[i][j]>100) and (cb[i][j])<120: skin[i][j]= 255 else: skin[i][j] = 0 cv2.namedWindow(image,cv2.WINDOW_NORMAL) cv2.imshow(image,img) cv2.namedWindow(image+"skin2 cr+cb",cv2.WINDOW_NORMAL) cv2.imshow(image+"skin2 cr+cb",skin) dst = cv2.bitwise_and(img,img,mask=skin) cv2.namedWindow("cutout",cv2.WINDOW_NORMAL) cv2.imshow("cutout",dst) cv2.waitKey()
效果
4 HSV颜色空间H,S,V范围筛选法
原理
还是转换空间然后每个通道设置一个阈值综合考虑,进行二值化操作。
代码
def hsv_detect(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) (_h,_s,_v)= cv2.split(hsv) skin= np.zeros(_h.shape,dtype=np.uint8) (x,y)= _h.shape for i in range(0,x): for j in range(0,y): if(_h[i][j]>7) and (_h[i][j]<20) and (_s[i][j]>28) and (_s[i][j]<255) and (_v[i][j]>50 ) and (_v[i][j]<255): skin[i][j] = 255 else: skin[i][j] = 0 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) cv2.namedWindow(image + "hsv", cv2.WINDOW_NORMAL) cv2.imshow(image + "hsv", skin) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout", dst) cv2.waitKey()
效果
示例
import cv2 import numpy as np def ellipse_detect(image): """ :param image: img path :return: None """ img = cv2.imread(image, cv2.IMREAD_COLOR) skinCrCbHist = np.zeros((256, 256), dtype=np.uint8) cv2.ellipse(skinCrCbHist, (113, 155), (23, 15), 43, 0, 360, (255, 255, 255), -1) YCRCB = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y, cr, cb) = cv2.split(YCRCB) skin = np.zeros(cr.shape, dtype=np.uint8) (x, y) = cr.shape for i in range(0, x): for j in range(0, y): CR = YCRCB[i, j, 1] CB = YCRCB[i, j, 2] if skinCrCbHist[CR, CB] > 0: skin[i, j] = 255 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout", dst) cv2.waitKey() if __name__ == '__main__': ellipse_detect('./test.png')
到此这篇关于python opencv肤色检测的实现示例的文章就介绍到这了,更多相关opencv 肤色检测内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
标签:
opencv,肤色检测
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python opencv肤色检测的实现示例”评论...
更新日志
2024年12月23日
2024年12月23日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]