Python OpenCV存储图像使用的是Numpy存储,所以可以将Numpy当做图像类型操作,操作之前还需进行类型转换,转换到int8类型
import cv2 import numpy as np # 使用numpy方式创建一个二维数组 img = np.ones((100,100)) # 转换成int8类型 img = np.int8(img) # 颜色空间转换,单通道转换成多通道, 可选可不选 img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.imwrite("demo.jpg", img)
补充知识:Python中读取图片并转化为numpy.ndarray()数据的6种方式
方式: 返回类型
OpenCV np.ndarray
PIL PIL.JpegImagePlugin.JpegImageFile
keras.preprocessing.image PIL.JpegImagePlugin.JpegImageFile
Skimage.io np.ndarray
matplotlib.pyplot np.ndarray
matplotlib.image np.ndarray
import numpy as np import cv2 from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img from PIL import Image import skimage.io as io import matplotlib.pyplot as plt import matplotlib.image as mpig ''' 方式: 返回类型 OpenCV np.ndarray PIL PIL.JpegImagePlugin.JpegImageFile keras.preprocessing.image PIL.JpegImagePlugin.JpegImageFile Skimage.io np.ndarray matplotlib.pyplot np.ndarray matplotlib.image np.ndarray ''' imagePath="E:/DataSet/test1/trainSet/bus/300.jpg" ''' 方式一:使用OpenCV ''' img1=cv2.imread(imagePath) print("img1:",img1.shape) print("img1:",type(img1)) print("-"*10) ''' 方式二:使用PIL ''' img2=Image.open(imagePath) print("img2:",img2) print("img2:",type(img2)) #转换成np.ndarray格式 img2=np.array(img2) print("img2:",img2.shape) print("img2:",type(img2)) print("-"*10) ''' 方式三:使用keras.preprocessing.image ''' img3=load_img(imagePath) print("img3:",img3) print("img3:",type(img3)) #转换成np.ndarray格式,使用np.array(),或者使用keras里的img_to_array() #使用np.array() #img3=np.array(img2) #使用keras里的img_to_array() img3=img_to_array(img3) print("img3:",img3.shape) print("img3:",type(img3)) print("-"*10) ''' 方式四:使用Skimage.io ''' img4=io.imread(imagePath) print("img4:",img4.shape) print("img4:",type(img4)) print("-"*10) ''' 方式五:使用matplotlib.pyplot ''' img5=plt.imread(imagePath) print("img5:",img5.shape) print("img5:",type(img5)) print("-"*10) ''' 方式六:使用matplotlib.image ''' img6=mpig.imread(imagePath) print("img6:",img6.shape) print("img6:",type(img6)) print("-"*10)
运行结果:
Using TensorFlow backend. img1: (256, 384, 3) img1: <class 'numpy.ndarray'> ---------- img2: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x256 at 0x249608A8C50> img2: <class 'PIL.JpegImagePlugin.JpegImageFile'> img2: (256, 384, 3) img2: <class 'numpy.ndarray'> ---------- img3: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x256 at 0x2496B5A23C8> img3: <class 'PIL.JpegImagePlugin.JpegImageFile'> img3: (256, 384, 3) img3: <class 'numpy.ndarray'> ---------- img4: (256, 384, 3) img4: <class 'numpy.ndarray'> ---------- img5: (256, 384, 3) img5: <class 'numpy.ndarray'> ---------- img6: (256, 384, 3) img6: <class 'numpy.ndarray'> ----------
以上这篇Python OpenCV中的numpy与图像类型转换操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python OpenCV中的numpy与图像类型转换操作”评论...
更新日志
2024年12月23日
2024年12月23日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]