最近准备复现一下 KDD-20 Towards Deeper Graph Neural Networks 的代码,顺便学习一下 GCN 最新的一些进展。

GCN 的代码通常需要安装 Pytorch on Graph, 按照其 官方指导, 发现无法兼容当前所使用的服务器上的 pytorch1.3 和 cuda10.0 环境, 需要升级 cuda 和 pytorch 的版本。

于是准备重新安装一个虚拟环境,使用上 cuda 10.2 和 pytorch1.6。

1. 安装 Cuda10.2 以及对应版本的 Cudnn

安装 cuda 10.2,

wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
sudo sh cuda_10.2.89_440.33.01_linux.run

然后安装对应版本的 cudnn

但由于当前机器上已经安装了 cuda 10.0,因此想要找一些能够切换的方法,不删去当前的 cuda10.0, 发现可以使用软链接的方式进行切换

# 切换为 cuda 8.0 版本
rm -rf /usr/local/cuda #删除之前创建的软链接
sudo ln -s /usr/local/cuda-8.0/ /usr/local/cuda/
nvcc --version #查看当前 cuda 版本

 nvcc: NVIDIA (R) Cuda compiler driver
 Copyright (c) 2005-2016 NVIDIA Corporation
 Built on Mon_Jan_23_12:24:11_CST_2017
 Cuda compilation tools, release 8.0, V8.0.62

# cuda8.0 切换到 cuda9.0 
rm -rf /usr/local/cuda
sudo ln -s /usr/local/cuda-9.0/ /usr/local/cuda/
nvcc --version

安装 cuda10.2,这里只安装 Cuda Toolkit 10.2, 不安装 driver, 因为之前 Cuda10.0 已经装过 driver 了。

Ubuntu配置Pytorch on Graph (PoG)环境过程图解

然后尝试安装 对应版本的 cudnn, 在linux上

使用

wget "https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.0.3.33/10.2_20200825/cudnn-10.2-linux-x64-v8.0.3.33.tgz"

会导致一直显示 403 Forbid 错误,但用 windows 浏览器可以访问成功,用 windows 下载,但后缀名变为了 ".solitairetheme8",

mv cudnn-10.2-linux-x64-v8.0.3.33.solitairetheme8 cudnn-10.2-linux-x64-v8.0.3.33.tgz

接下来安装 cudnn,注意到,现在有多个版本的 cuda 了,不要再使用软链接 /usr/local/cuda/, 而应该使用对应版本的 cuda 地址。

使用 cd /usr/local/ 可以看到当前安装的 cuda 的情况, 我这里是:

Ubuntu配置Pytorch on Graph (PoG)环境过程图解

使用如下命令完成 cudnn 的安装:

tar -zxvf cudnn-10.2-linux-x64-v8.0.3.33.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-10.2/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.2/lib64/
sudo chmod a+r /usr/local/cuda-10.2/include/cudnn.h
sudo chmod a+r /usr/local/cuda-10.2/lib64/libcudnn*

从官网下载实在太慢,也可以改为设置为 清华源

# 首先执行如下几条命令更换清华镜像源conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --set show_channel_urls yes

安装结果:

Ubuntu配置Pytorch on Graph (PoG)环境过程图解

突然发现,conda 也会安装一个 cudatoolkit=10.2, 但这个和自己手动安装的还是有很大的不同的

安装 pytorch1.7 一直没有成功,最新版的 pytorch1.7 需要从国外官网源头直接进行下载,速度太慢,一直失败。
所以尝试安装 pytroch 1.5,

conda install pytorch=1.5

conda install torchvision

然后再按照 PoG 官网安装相应的包:

pip install torch-scatter
pip install torch-sparse
pip install torch-cluster
pip install torch-spline-conv
pip install torch-geometric

最后终于成功完成了安装。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Ubuntu,配置,Pytorch

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?