基本环境配置
- python 3.6
- pycharm
- requests
- parsel
- time
相关模块pip安装即可
确定目标网页数据
哦豁,这个价格..................看到都觉得脑阔疼
通过开发者工具,可以直接找到网页返回的数据~
每一个二手房的数据,都在网页的 li 标签里面,咱们可以获取网页返回的数据,然后通过解析,就可以获取到自己想要的数据了~
获取网页数据
import requests headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36' } response = requests.get(url=url, headers=headers)
解析网页数据
import parsel selector = parsel.Selector(response.text) lis = selector.css('.sellListContent li') dit = {} for li in lis: title = li.css('.title a::text').get() dit['标题'] = title positionInfo = li.css('.positionInfo a::text').getall() info = '-'.join(positionInfo) dit['开发商'] = info houseInfo = li.css('.houseInfo::text').get() dit['房子信息'] = houseInfo followInfo = li.css('.followInfo::text').get() dit['发布周期'] = followInfo Price = li.css('.totalPrice span::text').get() dit['售价/万'] = Price unitPrice = li.css('.unitPrice span::text').get() dit['单价'] = unitPrice csv_writer.writerow(dit) print(dit)
保存数据
import csv f = open('二手房信息.csv', mode='a', encoding='utf-8-sig', newline='') csv_writer = csv.DictWriter(f, fieldnames=['标题', '开发商', '房子信息', '发布周期', '售价/万', '单价']) csv_writer.writeheader() csv_writer.writerow(dit) f.close()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“基于python爬取链家二手房信息代码示例”评论...
更新日志
2024年11月08日
2024年11月08日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]