思路:
1、将需要查询城市列表,通过城市接口转换成相应的code码
2、遍历城市、职位生成url
3、通过url获取列表页面信息,遍历列表页面信息
4、再根据列表页面信息的job_link获取详情页面信息,将需要的信息以字典data的形式存在列表datas里
5、判断列表页面是否有下一页,重复步骤3、4;同时将列表datas一直传递下去
6、一个城市、职位url爬取完后,将列表datas接在列表datas_list后面,重复3、4、5
7、最后将列表datas_list的数据,遍历写在Excel里面
知识点:
1、将response内容以json形式输出,解析json并取值
2、soup 的select()和find_all()和find()方法使用
3、异常Exception的使用
4、wldt创建编辑Excel的使用
import requests, time, xlwt from bs4 import BeautifulSoup class MyJob(): def __init__(self, mycity, myquery): self.city = mycity self.query = myquery self.list_url = "https://www.zhipin.com/job_detail/"%(self.query, self.city) self.datas = [] self.header = { 'authority': 'www.zhipin.com', 'method': 'GET', 'scheme': 'https', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'zh-CN,zh;q=0.9', 'cache-control': 'max-age=0', 'cookie': 'lastCity=101210100;uab_collina=154408714637849548916323;toUrl=/;c=1558272251;g=-;l=l=%2Fwww.zhipin.com%2Fuser%2Flogin.html&r=; Hm_lvt_194df3105ad7148dcf2b98a91b5e727a=1555852331,1556985726,1558169427,1558272251; __a=40505844.1544087205.1558169426.1558272251.41.14.4.31; Hm_lpvt_194df3105ad7148dcf2b98a91b5e727a=1558272385', 'referer': 'https://www.zhipin.com/"https://www.zhipin.com/wapi/zpCommon/data/city.json" #获取城市 json = requests.get(city_url).json() zpData = json["zpData"]["cityList"] list = [] for city in city_list : for data_sf in zpData: for data_dq in data_sf["subLevelModelList"]: if city == data_dq["name"]: list.append(data_dq["code"]) return list #获取所有页内容 def get_job_list(self, url, datas): print(url) html = requests.get(url, headers=self.header).text soup = BeautifulSoup(html, 'html.parser') jobs = soup.select(".job-primary") for job in jobs: data = {} # 招聘id data["job_id"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("a").get("data-jobid") # 招聘链接 data["job_link"] = "https://www.zhipin.com" + job.find_all("div", attrs={"class": "info-primary"})[0].find("a").get("href") # 招聘岗位 data["job_name"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("div", attrs={"class": "job-title"}).get_text() # 薪资 data["job_red"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("span", attrs={"class": "red"}).get_text() # 地址 #工作年限 #学历 data["job_address"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("p").get_text().split(" ") # 企业链接 data["job_company_link"] = job.find_all("div", attrs={"class": "info-company"})[0].find("a").get("href") # 企业信息 data["job_company"] = job.find_all("div", attrs={"class": "info-company"})[0].find("p").get_text().split(" ") # boss链接 data["job_publis_link"] = job.find_all("div", attrs={"class": "info-publis"})[0].find("img").get("src") # boos信息 data["job_publis"] = job.find_all("div", attrs={"class": "info-publis"})[0].find("h3").get_text().split(" ") time.sleep(5) self.get_job_detail(data) # 获取job详情页内容 print(data) datas.append(data) # 将某条job添加到datas中,直到将当前页添加完 try: next_url = soup.find("div", attrs={"class": "page"}).find("a", attrs={"class": "next"}).get("href") #if next_url[-1] =="3": # 第二页自动抛异常 if next_url in "javascript:;": # 最后一页自动抛异常 raise Exception() except Exception as e: print("最后一页了;%s" % e) return datas # 返回所有页内容 else: time.sleep(5) next_url = "https://www.zhipin.com" + next_url self.get_job_list(next_url, datas) return datas # 返回所有页内容 #获取详情页内容 def get_job_detail(self, data): print(data["job_link"]) html = requests.get(data["job_link"], headers=self.header).text soup = BeautifulSoup(html, 'html.parser') # 招聘公司 data["detail_content_name"] = soup.find_all("div", attrs={"class": "detail-content"})[0].find("div", attrs={"class": "name"}).get_text() # 福利 data["detail_primary_tags"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("div", attrs={"class": "job-tags"}).get_text().strip() # 招聘岗位 data["detail_primary_name"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("h1").get_text() # 招聘状态 data["detail_primary_status"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("div", attrs={"class": "job-status"}).get_text() # 薪资 data["detail_primary_salary"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("span", attrs={"class": "salary"}).get_text() # 地址 #工作年限 #学历 data["detail_primary_address"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("p").get_text() # 工作地址 data["detail_content_address"] = soup.find_all("div", attrs={"class": "detail-content"})[0].find("div", attrs={"class": "location-address"}).get_text() # 职位描述 data["detail_content_text"] = soup.find_all("div", attrs={"class": "detail-content"})[0].find("div", attrs={"class": "text"}).get_text().strip().replace(";", "\n") # boss名字 data["detail_op_name"] = soup.find_all("div", attrs={"class": "detail-op"})[1].find("h2", attrs={"class": "name"}).get_text() # boss职位 data["detail_op_job"] = soup.find_all("div", attrs={"class": "detail-op"})[1].find("p", attrs={"class": "gray"}).get_text().split("·")[0] # boss状态 data["detail_op_status"] = soup.find_all("div", attrs={"class": "detail-op"})[1].find("p", attrs={"class": "gray"}).get_text().split("·")[1] #将获取的数据写入Excel def setExcel(self, datas_list): book = xlwt.Workbook(encoding='utf-8') table = book.add_sheet("boss软件测试") table.write(0, 0, "编号") table.write(0, 1, "招聘链接") table.write(0, 2, "招聘岗位") table.write(0, 3, "薪资") table.write(0, 4, "地址") table.write(0, 5, "企业链接") table.write(0, 6, "企业信息") table.write(0, 7, "boss链接") table.write(0, 8, "boss信息") table.write(0, 9, "detail详情") i = 1 for data in datas_list: table.write(i, 0, data["job_id"]) table.write(i, 1, data["job_link"]) table.write(i, 2, data["job_name"]) table.write(i, 3, data["job_red"]) table.write(i, 4, data["job_address"]) table.write(i, 5, data["job_company_link"]) table.write(i, 6, data["job_company"]) table.write(i, 7, data["job_publis_link"]) table.write(i, 8, data["job_publis"]) table.write(i, 10, data["detail_content_name"]) table.write(i, 11, data["detail_primary_name"]) table.write(i, 12, data["detail_primary_status"]) table.write(i, 13, data["detail_primary_salary"]) table.write(i, 14, data["detail_primary_address"]) table.write(i, 15, data["detail_content_text"]) table.write(i, 16, data["detail_op_name"]) table.write(i, 17, data["detail_op_job"]) table.write(i, 18, data["detail_op_status"]) table.write(i, 19, data["detail_primary_tags"]) table.write(i, 20, data["detail_content_address"]) i += 1 book.save(r'C:\%s_boss软件测试.xls' % time.strftime('%Y%m%d%H%M%S')) print("Excel保存成功") if __name__ == '__main__': city_list = MyJob("","").get_city(["杭州"]) query_list = ["软件测试", "测试工程师"] datas_list = [] for city in city_list: for query in query_list: myjob = MyJob(city, query) datas = myjob.get_job_list(myjob.list_url, myjob.datas) datas_list.extend(datas) myjob.setExcel(datas_list)
以上就是python使用bs4爬取boss直聘静态页面的详细内容,更多关于python 爬取boss直聘的资料请关注其它相关文章!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python使用bs4爬取boss直聘静态页面”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年12月24日
2024年12月24日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]