任务背景:
调用API接口数据,抽取我们所需类型的数据,并写入指定mysql数据库。
先从宏观上看这个任务,并对任务进行分解:
step1:需要学习python下的通过url读取数据的方式;
step2:数据解析,也是核心部分,数据格式从python角度去理解,是字典?列表?还是各种嵌套?
step3:连接mysql数据库,将数据写入。
从功能上看,该数据获取程序可以分为3个方法,即step1对应方法request_data(),step2对应方法parse_data(),step3对应data_to_db()。
第一轮,暂不考虑异常,只考虑正常状态下的功能实现。
1、先看request_data():
import requests def request_data(url): req = requests.get(url, timeout=30) # 请求连接 req_jason = req.json() # 获取数据 return req_jason
入参:url地址;return:获取到的数据。
2、然后看parse_data():
不同的API接口下的数据格式各不相同,需要先理清,打开之后密密麻麻一大串,有的可能连完整的一轮数据间隔在哪都不知道,这时候可以巧用符号{ [ , ] }辅助判断。
梳理之后,发现本接口下的数据格式为,最外层为字典,我们所需的数据在第一个key“data”下,data对应的value为列表,列表中的每个元素为字典,字典中的部分键值
即为我们需要的内容。这样,就明确了我们的数据结构为字典套列表,列表再套字典的格式,最后一层的字典还存在一键多值(比如“weather”)的情况。
当然,还有懒人方法,就是百度json在线解析格式化。
摘取部分数据如下:{"data":[{"timestamp_utc":"2020-08-31T08:00:00","weather":{"icon":"c02d","code":802,
wind_dir":336,"clouds_hi":0,"precip":0.0625},{"timestamp_utc":"2020-08-31T08:00:00","weather":{"icon":"c02d","code":802,},
wind_dir":336,"clouds_hi":0,"precip":0.0625],"city_name":"Dianbu","lon":117.58,"timezone":"Asia\/Shanghai","lat":31.95,"country_code":"CN"}
def parse_data(req_jason): data_trunk = req_jason['data']# 获取data键值下的列表 time_now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") #获取当前时刻 for i in range(len(data_trunk)): data_unit = data_trunk[i] # 依次获取列表下第i个元素即字典 del data_unit['weather'] # 删除该字典中不需要的一键多值的key和value,不删除的话会影响后续的dataframe转换,但是,如果该键值需要的话,需要采取其他处理方式 df = pd.DataFrame([data_unit]) # 将删除键值后的字典转为datafrme list_need = ['timestamp_utc', 'wind_dir', 'precip','clouds_hi'] # 列出我们需要的列 df_need = df[list_need] # 保留df中需要的列 10 df_need.insert(0, 'update_time', time_now) #表格中还需额外增加获取数据的当前时间,并且需要放在dataframe的第一列
备注:数据插入数据库,有两种方式,一种是采用insert的sql语句,采用字典的形式插入,另一种是采用dataframe的方式,采用pandas中的to_sql方法。本案例选择了后者,所以在数据解析时,将字典数据转成dataframe格式。
入参:获取到的数据;return值:无
运行以后,发现这样的程序存在一些问题:就是这个for循环括起来的过多,导致写数据库时是一条条写入而不是一整块写入,会影响程序效率,所以需要对程序进行如下修改:
def parse_data(req_jason): data_trunk = req_jason['data']# 获取data键值下的列表 time_now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") #获取当前时刻 for i in range(len(data_trunk)): data_unit = data_trunk[i] # 依次获取列表下第i个元素即字典 del data_unit['weather'] # 删除该字典中不需要的一键多值的key和value,不删除的话会影响后续的dataframe转换,但是,如果该键值需要的话,需要采取其他处理方式 df = pd.DataFrame(data_trunk) # 将删除键值后的整个列表套字典转为datafrme list_need = ['timestamp_utc', 'wind_dir', 'precip','clouds_hi'] # 列出我们需要的列 df_need = df[list_need] # 保留df中需要的列 df_need.insert(0, 'update_time', time_now) #表格中还需额外增加获取数据的当前时间,并且需要放在dataframe的第一列
也就是从第7行之后跳出循环;
如果觉得for循环影响整体美观,也可以用map代替,将代码第4/5/6行改为如下代码,不过性能上来说可能还是for循环更好,具体对比可看其他博主的测试,或者自己测试下运行时间。
map(data_trunk.pop, ['weather'])
3. 最后就是data_to_sql():
def data_to_sql(df): table = 'request_data_api' engine = create_engine("mysql+pymysql://" + 'root' + ":" + '123' + "@" + 'localhost' + ":" + '3306' + "/" + 'test' + "") df.to_sql(name=table, con=engine, if_exists='append', index=False, index_label=False)
入参:dataframe类型数据。
当当当,正常部分已完成,就下来就需要想象各种异常以及处理对策。
第二轮,想象各种异常以及异常的记录与处理对策。
1.读取url后,获取不到数据 → 休息几秒,尝试再次重连获取
2.连接数据库异常 → 数据库可能关闭,尝试重新ping,
3.写入数据库的内容为空 → 记录异常,放弃入库
第三轮,让程序定时跑起来。
方法一:在代码中采用apscheduler下的cron功能(trigger='cron‘,类似linux下的crontab)实现定时运行(当然,apscheduler还有另一种trigger=‘interval'模式);
方法二:在linux下的crontab增加定时任务。
具体可以看别的帖子。
以上就是python 调用API接口 获取和解析 Json数据的详细内容,更多关于python 解析数据的资料请关注其它相关文章!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]