我们在做诸如人群密集度等可视化的时候,可能会考虑使用热力图,在Python中能很方便地绘制热力图。
下面以识别图片中的行人,并绘制热力图为例进行讲解。
- 步骤1:首先识别图像中的人,得到bounding box的中心坐标。识别方法多样化,坐标也可以自己定义。
- 步骤2:将所有中心坐标放入一个list类型的变量data中,即data = [[x1,y1] [x2,y2] …]
- 步骤3:绘制热力图,并将热力图加权叠加到原图上。
需要import的包:
import cv2 import numpy as np from PIL import Image from pyheatmap.heatmap import HeatMap import matplotlib.pyplot as plt
根据识别的结果得到data的值,传入以下apply_heatmap(image,data)绘制热力图;
def apply_heatmap(image,data): '''image是原图,data是坐标''' '''创建一个新的与原图大小一致的图像,color为0背景为黑色。这里这样做是因为在绘制热力图的时候如果不选择背景图,画出来的图与原图大小不一致(根据点的坐标来的),导致无法对热力图和原图进行加权叠加,因此,这里我新建了一张背景图。''' background = Image.new("RGB", (image.shape[1], image.shape[0]), color=0) # 开始绘制热度图 hm = HeatMap(data) hit_img = hm.heatmap(base=background, r = 100) # background为背景图片,r是半径,默认为10 # ~ plt.figure() # ~ plt.imshow(hit_img) # ~ plt.show() #hit_img.save('out_' + image_name + '.jpeg') hit_img = cv2.cvtColor(np.asarray(hit_img),cv2.COLOR_RGB2BGR)#Image格式转换成cv2格式 overlay = image.copy() alpha = 0.5 # 设置覆盖图片的透明度 cv2.rectangle(overlay, (0, 0), (image.shape[1], image.shape[0]), (255, 0, 0), -1) # 设置蓝色为热度图基本色蓝色 image = cv2.addWeighted(overlay, alpha, image, 1-alpha, 0) # 将背景热度图覆盖到原图 image = cv2.addWeighted(hit_img, alpha, image, 1-alpha, 0) # 将热度图覆盖到原图
网站上随意找一张图片进行实验:
原图如下:
结果如下:
可视化效果可以调节,如:通过调节hm.heatmap(base=background, r = 100)中的r即可调节热力点的半径大小。
以上就是python 绘制场景热力图的示例的详细内容,更多关于python 绘制热力图的资料请关注其它相关文章!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python 绘制场景热力图的示例”评论...
更新日志
2024年12月25日
2024年12月25日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]