1. 扩展Tensor维度
相信刚接触Pytorch的宝宝们,会遇到这样一个问题,输入的数据维度和实验需要维度不一致,输入的可能是2维数据或3维数据,实验需要用到3维或4维数据,那么我们需要扩展这个维度。其实特别简单,只要对数据加一个扩展维度方法就可以了。
1.1torch.unsqueeze(self: Tensor, dim: _int)
torch.unsqueeze(self: Tensor, dim: _int)
参数说明:self:输入的tensor数据,dim:要对哪个维度扩展就输入那个维度的整数,可以输入0,1,2……
1.2Code
第一种方式,输入数据后直接加unsqueeze()
扩展第一维和第二维为1
import torch def reset_unsqueeze1(): data = torch.rand([3, 3]) data1 = data.unsqueeze(dim=0).unsqueeze(dim=1) print("data_size: ", data.shape) print("data: ", data) print("data1_size: ", data1.shape) print("data1: ", data1)
结果显示
第二种方式,用torch.unsqueeze()
import torch def reset_unsqueeze2(): data = torch.rand([3, 3]) data1 = torch.unsqueeze(data, dim=0) print("data_size: ", data.shape) print("data: ", data) print("data1_size: ", data1.shape) print("data1: ", data1)
结果显示
2. 压缩Tensor维度
2.1torch.squeeze(self: Tensor, dim: _int)
这个方法刚好和torch.unsqueeze()方法效果相反,压缩Tensor维度。
2.2 Code
第一种方式,输入数据后直接加squeeze()
import torch def reset_squeeze1(): data = torch.rand([1, 1, 3, 3]) data1 = data.squeeze(dim=0).squeeze(dim=1) print("data_size: ", data.shape) print("data: ", data) print("data1_size: ", data1.shape) print("data1: ", data1)
结果显示
第二种方式,用torch.squeeze()
import torch def reset_squeeze2(): data = torch.rand([1, 1, 3, 3]) data1 = torch.squeeze(data, dim=0) print("data_size: ", data.shape) print("data: ", data) print("data1_size: ", data1.shape) print("data1: ", data1)
结果显示
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Pytorch 扩展Tensor维度、压缩Tensor维度的方法”评论...
更新日志
2024年12月25日
2024年12月25日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]