1、安装scikit-learn
1.1 Scikit-learn 依赖
- Python (>= 2.6 or >= 3.3),
- NumPy (>= 1.6.1),
- SciPy (>= 0.9).
分别查看上述三个依赖的版本:
python -V
结果:
Python 2.7.3
python -c 'import scipy; print scipy.version.version'
scipy版本结果:
0.9.0
python -c "import numpy; print numpy.version.version"
numpy结果:
1.10.2
1.2 Scikit-learn安装
如果你已经安装了NumPy、SciPy和python并且均满足1.1中所需的条件,那么可以直接运行sudo
pip install - U scikit - learn
执行安装。
2、计算auc指标
import numpy as np from sklearn.metrics import roc_auc_score y_true = np.array([0, 0, 1, 1]) y_scores = np.array([0.1, 0.4, 0.35, 0.8]) roc_auc_score(y_true, y_scores)
输出:
0.75
3、计算roc曲线
import numpy as np from sklearn import metrics y = np.array([1, 1, 2, 2]) #实际值 scores = np.array([0.1, 0.4, 0.35, 0.8]) #预测值 fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) #pos_label=2,表示值为2的实际值为正样本 print fpr print tpr print thresholds
输出:
array([ 0. , 0.5, 0.5, 1. ]) array([ 0.5, 0.5, 1. , 1. ]) array([ 0.8 , 0.4 , 0.35, 0.1 ])
标签:
python,auc
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python计算auc的方法”评论...
更新日志
2024年12月25日
2024年12月25日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]