如下所示:
with tf.GradientTape(persistent=True) as tape: z1 = f(w1, w2 + 2.) z2 = f(w1, w2 + 5.) z3 = f(w1, w2 + 7.) z = [z1,z3,z3] [tape.gradient(z, [w1, w2]) for z in (z1, z2, z3)]
输出结果
[[<tf.Tensor: id=56906, shape=(), dtype=float32, numpy=40.0>, <tf.Tensor: id=56898, shape=(), dtype=float32, numpy=10.0>], [<tf.Tensor: id=56919, shape=(), dtype=float32, numpy=46.0>, <tf.Tensor: id=56911, shape=(), dtype=float32, numpy=10.0>], [<tf.Tensor: id=56932, shape=(), dtype=float32, numpy=50.0>, <tf.Tensor: id=56924, shape=(), dtype=float32, numpy=10.0>]] with tf.GradientTape(persistent=True) as tape: z1 = f(w1, w2 + 2.) z2 = f(w1, w2 + 5.) z3 = f(w1, w2 + 7.) z = [z1,z2,z3] tape.gradient(z, [w1, w2])
输出结果
[<tf.Tensor: id=57075, shape=(), dtype=float32, numpy=136.0>,
<tf.Tensor: id=57076, shape=(), dtype=float32, numpy=30.0>]
总结:如果对一个listz=[z1,z2,z3]求微分,其结果将自动求和,而不是返回z1、z2和z3各自对[w1,w2]的微分。
补充知识:Python/Numpy 矩阵运算符号@
如下所示:
A = np.matrix('3 1; 8 2')
B = np.matrix('6 1; 7 9')
A@B matrix([[25, 12], [62, 26]])
以上这篇TensorFlow Autodiff自动微分详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“TensorFlow Autodiff自动微分详解”评论...
更新日志
2024年11月08日
2024年11月08日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]