我就废话不多说了,大家还是直接看代码吧~

import os 
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" 
os.environ["CUDA_VISIBLE_DEVICES"]=""
import sys
import gc
import time
import cv2
import random
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from tqdm import tqdm

from random_eraser import get_random_eraser
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img

datagen = ImageDataGenerator(
  rotation_range=20,   #旋转
  width_shift_range=0.1,  #水平位置平移
#   height_shift_range=0.2,  #上下位置平移
  shear_range=0.5,    #错切变换,让所有点的x坐标(或者y坐标)保持不变,而对应的y坐标(或者x坐标)则按比例发生平移
  zoom_range=[0.9,0.9],  # 单方向缩放,当一个数值时两个方向等比例缩放,参数为list时长宽不同程度缩放。参数大于0小于1时,执行的是放大操作,当参数大于1时,执行的是缩小操作。
  channel_shift_range = 40, #偏移通道数值,改变图片颜色,越大颜色越深
  horizontal_flip=True,  #水平翻转,垂直翻转vertical_flip
  fill_mode='nearest',   #操作导致图像缺失时填充方式。“constant”、“nearest”(默认)、“reflect”和“wrap”
  preprocessing_function = get_random_eraser(p=0.7,v_l=0,v_h=255,s_l=0.01,s_h=0.03,r_1=1,r_2=1.5,pixel_level=True)
  )

# train_generator = datagen.flow_from_directory(
#       'base/Images/',
#       save_to_dir = 'base/fake/',
#       batch_size=1
#       )
# for i in range(5):
#  train_generator.next()

# !
# df_train = pd.read_csv('base/Annotations/label.csv', header=None)
# df_train.columns = ['image_id', 'class', 'label']
# classes = ['collar_design_labels', 'neckline_design_labels', 'skirt_length_labels', 
#   'sleeve_length_labels', 'neck_design_labels', 'coat_length_labels', 'lapel_design_labels', 
#   'pant_length_labels']
# !

# classes = ['collar_design_labels']

# !
# for i in range(len(classes)):
#  gc.enable()

# #  单个分类
#  cur_class = classes[i]
#  df_load = df_train[(df_train['class'] == cur_class)].copy()
#  df_load.reset_index(inplace=True)
#  del df_load['index']

# #  print(cur_class)

# #  加载数据和label
#  n = len(df_load)
# #  n_class = len(df_load['label'][0])
# #  width = 256

# #  X = np.zeros((n,width, width, 3), dtype=np.uint8)
# #  y = np.zeros((n, n_class), dtype=np.uint8)

#  print(f'starting load trainset {cur_class} {n}')
#  sys.stdout.flush()
#  for i in tqdm(range(n)):
# #   tmp_label = df_load['label'][i]
#   img = load_img('base/{0}'.format(df_load['image_id'][i]))
#   x = img_to_array(img)
#   x = x.reshape((1,) + x.shape)
#   m=0
#   for batch in datagen.flow(x,batch_size=1):
# #    plt.imshow(array_to_img(batch[0]))
# #    print(batch)
#    array_to_img(batch[0]).save(f'base/fake/{format(df_load["image_id"][i])}-{m}.jpg')
#    m+=1
#    if m>3:
#     break
#  gc.collect()
# !  

img = load_img('base/Images/collar_design_labels/2f639f11de22076ead5fe1258eae024d.jpg')
plt.figure()
plt.imshow(img)
x = img_to_array(img)

x = x.reshape((1,) + x.shape)

i = 0
for batch in datagen.flow(x,batch_size=5):
 plt.figure()
 plt.imshow(array_to_img(batch[0]))
#  print(len(batch))
 i += 1
 if i >0:
  break
#多输入,设置随机种子
# Define the image transformations here
gen = ImageDataGenerator(horizontal_flip = True,
       vertical_flip = True,
       width_shift_range = 0.1,
       height_shift_range = 0.1,
       zoom_range = 0.1,
       rotation_range = 40)

# Here is the function that merges our two generators
# We use the exact same generator with the same random seed for both the y and angle arrays
def gen_flow_for_two_inputs(X1, X2, y):
 genX1 = gen.flow(X1,y, batch_size=batch_size,seed=666)
 genX2 = gen.flow(X1,X2, batch_size=batch_size,seed=666)
 while True:
   X1i = genX1.next()
   X2i = genX2.next()
   #Assert arrays are equal - this was for peace of mind, but slows down training
   #np.testing.assert_array_equal(X1i[0],X2i[0])
   yield [X1i[0], X2i[1]], X1i[1]
#手动构造,直接输出多label
generator = ImageDataGenerator(rotation_range=5.,
        width_shift_range=0.1, 
        height_shift_range=0.1, 
        horizontal_flip=True, 
        vertical_flip=True)

def generate_data_generator(generator, X, Y1, Y2):
 genX = generator.flow(X, seed=7)
 genY1 = generator.flow(Y1, seed=7)
 while True:
   Xi = genX.next()
   Yi1 = genY1.next()
   Yi2 = function(Y2)
   yield Xi, [Yi1, Yi2]
model.fit_generator(generate_data_generator(generator, X, Y1, Y2),
    epochs=epochs)
def batch_generator(generator,X,Y):
 Xgen = generator.flow(X)
 while True:
  yield Xgen.next(),Y
h = model.fit_generator(batch_generator(datagen, X_all, y_all), 
       steps_per_epoch=len(X_all)//32+1,
       epochs=80,workers=3,
       callbacks=[EarlyStopping(patience=3), checkpointer,ReduceLROnPlateau(monitor='val_loss',factor=0.5,patience=1)], 
       validation_data=(X_val,y_val))

补充知识:读取图片成numpy数组,裁剪并保存 和 数据增强(ImageDataGenerator)

我就废话不多说了,大家还是直接看代码吧~

from PIL import Image
import numpy as np
from PIL import Image
from keras.preprocessing import image
import matplotlib.pyplot as plt
import os
import cv2
# from scipy.misc import toimage
import matplotlib
# 生成图片地址和对应标签
file_dir = '../train/'
image_list = []
label_list = []
cate = [file_dir + x for x in os.listdir(file_dir) if os.path.isdir(file_dir + x)]
for name in cate:
 temp = name.split('/')
 path = '../train_new/' + temp[-1]
 isExists = os.path.exists(path)
 if not isExists:
  os.makedirs(path) # 目录不存在则创建
 class_path = name + "/"

 for file in os.listdir(class_path):
  print(file)
  img_obj = Image.open(class_path + file) # 读取图片
  img_array = np.array(img_obj)
  resized = cv2.resize(img_array, (256, 256)) # 裁剪
  resized = resized.astype('float32')
  resized /= 255.
  # plt.imshow(resized)
  # plt.show()
  save_path = path + '/' + file
  matplotlib.image.imsave(save_path, resized) # 保存

keras之数据增强

from PIL import Image
import numpy as np
from PIL import Image
from keras.preprocessing import image
import os
import cv2
# 生成图片地址和对应标签
file_dir = '../train/'

label_list = []
cate = [file_dir + x for x in os.listdir(file_dir) if os.path.isdir(file_dir + x)]
for name in cate:
 image_list = []
 class_path = name + "/"
 for file in os.listdir(class_path):
  image_list.append(class_path + file)
 batch_size = 64
 if len(image_list) < 10000:
  num = int(10000 / len(image_list))
 else:
  num = 0
 # 设置生成器参数
 datagen = image.ImageDataGenerator(fill_mode='wrap', # 填充模式
          rotation_range=40, # 指定旋转角度范围
          width_shift_range=0.2, # 水平位置平移
          height_shift_range=0.2, # 上下位置平移
          horizontal_flip=True, # 随机对图片执行水平翻转操作
          vertical_flip=True, # 对图片执行上下翻转操作
          shear_range=0.2,
          rescale=1./255, # 缩放
          data_format='channels_last')
 if num > 0:
  temp = name.split('/')
  path = '../train_datage/' + temp[-1]
  isExists = os.path.exists(path)
  if not isExists:
   os.makedirs(path)

  for image_path in image_list:
   i = 1
   img_obj = Image.open(image_path) # 读取图片
   img_array = np.array(img_obj)
   x = img_array.reshape((1,) + img_array.shape)  #要求为4维
   name_image = image_path.split('/')
   print(name_image)
   for batch in datagen.flow(x,
        batch_size=1,
        save_to_dir=path,
        save_prefix=name_image[-1][:-4] + '_',
        save_format='jpg'):
    i += 1
    if i > num:
     break

以上这篇Keras 数据增强ImageDataGenerator多输入多输出实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Keras,数据增强,ImageDataGenerator

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com