如下所示:
from keras import backend as K
from keras.models import load_model
models = load_model('models.hdf5')
image=r'image.png'
images=cv2.imread(r'image.png')
image_arr = process_image(image, (224, 224, 3))
image_arr = np.expand_dims(image_arr, axis=0)
layer_1 = K.function([base_model.get_input_at(0)], [base_model.get_layer('layer_name').output])
f1 = layer_1([image_arr])[0]
加载训练好并保存的网络模型
加载数据(图像),并将数据处理成array形式
指定输出层
将处理后的数据输入,然后获取输出
其中,K.function有两种不同的写法:
1. 获取名为layer_name的层的输出
layer_1 = K.function([base_model.get_input_at(0)], [base_model.get_layer('layer_name').output]) #指定输出层的名称
2. 获取第n层的输出
layer_1 = K.function([model.get_input_at(0)], [model.layers[5].output]) #指定输出层的序号(层号从0开始)
另外,需要注意的是,书写不规范会导致报错:
报错:
TypeError: inputs to a TensorFlow backend function should be a list or tuple
将该句:
f1 = layer_1(image_arr)[0]
修改为:
f1 = layer_1([image_arr])[0]
补充知识:keras.backend.function()
如下所示:
def function(inputs, outputs, updates=None, **kwargs):
 """Instantiates a Keras function.
 Arguments:
   inputs: List of placeholder tensors.
   outputs: List of output tensors.
   updates: List of update ops.
   **kwargs: Passed to `tf.Session.run`.
 Returns:
   Output values as Numpy arrays.
 Raises:
   ValueError: if invalid kwargs are passed in.
 """
 if kwargs:
  for key in kwargs:
   if (key not in tf_inspect.getargspec(session_module.Session.run)[0] and
     key not in tf_inspect.getargspec(Function.__init__)[0]):
    msg = ('Invalid argument "%s" passed to K.function with Tensorflow '
        'backend') % key
    raise ValueError(msg)
 return Function(inputs, outputs, updates=updates, **kwargs)
这是keras.backend.function()的源码。其中函数定义开头的注释就是官方文档对该函数的解释。
我们可以发现function()函数返回的是一个Function对象。下面是Function类的定义。
class Function(object):
 """Runs a computation graph.
 Arguments:
   inputs: Feed placeholders to the computation graph.
   outputs: Output tensors to fetch.
   updates: Additional update ops to be run at function call.
   name: a name to help users identify what this function does.
 """
 def __init__(self, inputs, outputs, updates=None, name=None,
        **session_kwargs):
  updates = updates or []
  if not isinstance(inputs, (list, tuple)):
   raise TypeError('`inputs` to a TensorFlow backend function '
           'should be a list or tuple.')
  if not isinstance(outputs, (list, tuple)):
   raise TypeError('`outputs` of a TensorFlow backend function '
           'should be a list or tuple.')
  if not isinstance(updates, (list, tuple)):
   raise TypeError('`updates` in a TensorFlow backend function '
           'should be a list or tuple.')
  self.inputs = list(inputs)
  self.outputs = list(outputs)
  with ops.control_dependencies(self.outputs):
   updates_ops = []
   for update in updates:
    if isinstance(update, tuple):
     p, new_p = update
     updates_ops.append(state_ops.assign(p, new_p))
    else:
     # assumed already an op
     updates_ops.append(update)
   self.updates_op = control_flow_ops.group(*updates_ops)
  self.name = name
  self.session_kwargs = session_kwargs
 def __call__(self, inputs):
  if not isinstance(inputs, (list, tuple)):
   raise TypeError('`inputs` should be a list or tuple.')
  feed_dict = {}
  for tensor, value in zip(self.inputs, inputs):
   if is_sparse(tensor):
    sparse_coo = value.tocoo()
    indices = np.concatenate((np.expand_dims(sparse_coo.row, 1),
                 np.expand_dims(sparse_coo.col, 1)), 1)
    value = (indices, sparse_coo.data, sparse_coo.shape)
   feed_dict[tensor] = value
  session = get_session()
  updated = session.run(
    self.outputs + [self.updates_op],
    feed_dict=feed_dict,
    **self.session_kwargs)
  return updated[:len(self.outputs)]
所以,function函数利用我们之前已经创建好的comuptation graph。遵循计算图,从输入到定义的输出。这也是为什么该函数经常用于提取中间层结果。
以上这篇keras K.function获取某层的输出操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
 - 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
 - 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
 - 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
 - 群星《2024好听新歌42》AI调整音效【WAV分轨】
 - 王思雨-《思念陪着鸿雁飞》WAV
 - 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
 - 李健《无时无刻》[WAV+CUE][590M]
 - 陈奕迅《酝酿》[WAV分轨][502M]
 - 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
 - 群星《吉他王(黑胶CD)》[WAV+CUE]
 - 齐秦《穿乐(穿越)》[WAV+CUE]
 - 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
 - 邝美云《邝美云精装歌集》[DSF][1.6G]
 - 吕方《爱一回伤一回》[WAV+CUE][454M]