这是最近碰到一个问题,先描述下问题:
首先我有一个训练好的模型(例如vgg16),我要对这个模型进行一些改变,例如添加一层全连接层,用于种种原因,我只能用TensorFlow来进行模型优化,tf的优化器,默认情况下对所有tf.trainable_variables()进行权值更新,问题就出在这,明明将vgg16的模型设置为trainable=False,但是tf的优化器仍然对vgg16做权值更新
以上就是问题描述,经过谷歌百度等等,终于找到了解决办法,下面我们一点一点的来复原整个问题。
trainable=False 无效
首先,我们导入训练好的模型vgg16,对其设置成trainable=False
from keras.applications import VGG16 import tensorflow as tf from keras import layers
# 导入模型 base_mode = VGG16(include_top=False) # 查看可训练的变量 tf.trainable_variables()
[<tf.Variable 'block1_conv1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>, <tf.Variable 'block1_conv1/bias:0' shape=(64,) dtype=float32_ref>, <tf.Variable 'block1_conv2/kernel:0' shape=(3, 3, 64, 64) dtype=float32_ref>, <tf.Variable 'block1_conv2/bias:0' shape=(64,) dtype=float32_ref>, <tf.Variable 'block2_conv1/kernel:0' shape=(3, 3, 64, 128) dtype=float32_ref>, <tf.Variable 'block2_conv1/bias:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'block2_conv2/kernel:0' shape=(3, 3, 128, 128) dtype=float32_ref>, <tf.Variable 'block2_conv2/bias:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'block3_conv1/kernel:0' shape=(3, 3, 128, 256) dtype=float32_ref>, <tf.Variable 'block3_conv1/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block3_conv2/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>, <tf.Variable 'block3_conv2/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block3_conv3/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>, <tf.Variable 'block3_conv3/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block4_conv1/kernel:0' shape=(3, 3, 256, 512) dtype=float32_ref>, <tf.Variable 'block4_conv1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block4_conv2/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block4_conv2/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block4_conv3/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block4_conv3/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv2/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv2/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv3/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv3/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block1_conv1_1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>, <tf.Variable 'block1_conv1_1/bias:0' shape=(64,) dtype=float32_ref>, <tf.Variable 'block1_conv2_1/kernel:0' shape=(3, 3, 64, 64) dtype=float32_ref>, <tf.Variable 'block1_conv2_1/bias:0' shape=(64,) dtype=float32_ref>, <tf.Variable 'block2_conv1_1/kernel:0' shape=(3, 3, 64, 128) dtype=float32_ref>, <tf.Variable 'block2_conv1_1/bias:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'block2_conv2_1/kernel:0' shape=(3, 3, 128, 128) dtype=float32_ref>, <tf.Variable 'block2_conv2_1/bias:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'block3_conv1_1/kernel:0' shape=(3, 3, 128, 256) dtype=float32_ref>, <tf.Variable 'block3_conv1_1/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block3_conv2_1/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>, <tf.Variable 'block3_conv2_1/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block3_conv3_1/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>, <tf.Variable 'block3_conv3_1/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block4_conv1_1/kernel:0' shape=(3, 3, 256, 512) dtype=float32_ref>, <tf.Variable 'block4_conv1_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block4_conv2_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block4_conv2_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block4_conv3_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block4_conv3_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv1_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv1_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv2_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv2_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv3_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv3_1/bias:0' shape=(512,) dtype=float32_ref>]
# 设置 trainable=False # base_mode.trainable = False似乎也是可以的 for layer in base_mode.layers: layer.trainable = False
设置好trainable=False后,再次查看可训练的变量,发现并没有变化,也就是说设置无效
# 再次查看可训练的变量
tf.trainable_variables()
[<tf.Variable 'block1_conv1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>, <tf.Variable 'block1_conv1/bias:0' shape=(64,) dtype=float32_ref>, <tf.Variable 'block1_conv2/kernel:0' shape=(3, 3, 64, 64) dtype=float32_ref>, <tf.Variable 'block1_conv2/bias:0' shape=(64,) dtype=float32_ref>, <tf.Variable 'block2_conv1/kernel:0' shape=(3, 3, 64, 128) dtype=float32_ref>, <tf.Variable 'block2_conv1/bias:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'block2_conv2/kernel:0' shape=(3, 3, 128, 128) dtype=float32_ref>, <tf.Variable 'block2_conv2/bias:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'block3_conv1/kernel:0' shape=(3, 3, 128, 256) dtype=float32_ref>, <tf.Variable 'block3_conv1/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block3_conv2/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>, <tf.Variable 'block3_conv2/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block3_conv3/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>, <tf.Variable 'block3_conv3/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block4_conv1/kernel:0' shape=(3, 3, 256, 512) dtype=float32_ref>, <tf.Variable 'block4_conv1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block4_conv2/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block4_conv2/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block4_conv3/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block4_conv3/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv2/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv2/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv3/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv3/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block1_conv1_1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>, <tf.Variable 'block1_conv1_1/bias:0' shape=(64,) dtype=float32_ref>, <tf.Variable 'block1_conv2_1/kernel:0' shape=(3, 3, 64, 64) dtype=float32_ref>, <tf.Variable 'block1_conv2_1/bias:0' shape=(64,) dtype=float32_ref>, <tf.Variable 'block2_conv1_1/kernel:0' shape=(3, 3, 64, 128) dtype=float32_ref>, <tf.Variable 'block2_conv1_1/bias:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'block2_conv2_1/kernel:0' shape=(3, 3, 128, 128) dtype=float32_ref>, <tf.Variable 'block2_conv2_1/bias:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'block3_conv1_1/kernel:0' shape=(3, 3, 128, 256) dtype=float32_ref>, <tf.Variable 'block3_conv1_1/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block3_conv2_1/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>, <tf.Variable 'block3_conv2_1/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block3_conv3_1/kernel:0' shape=(3, 3, 256, 256) dtype=float32_ref>, <tf.Variable 'block3_conv3_1/bias:0' shape=(256,) dtype=float32_ref>, <tf.Variable 'block4_conv1_1/kernel:0' shape=(3, 3, 256, 512) dtype=float32_ref>, <tf.Variable 'block4_conv1_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block4_conv2_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block4_conv2_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block4_conv3_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block4_conv3_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv1_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv1_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv2_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv2_1/bias:0' shape=(512,) dtype=float32_ref>, <tf.Variable 'block5_conv3_1/kernel:0' shape=(3, 3, 512, 512) dtype=float32_ref>, <tf.Variable 'block5_conv3_1/bias:0' shape=(512,) dtype=float32_ref>]
解决的办法
解决的办法就是在导入模型的时候建立一个variable_scope,将需要训练的变量放在另一个variable_scope,然后通过tf.get_collection获取需要训练的变量,最后通过tf的优化器中var_list指定需要训练的变量
from keras import models with tf.variable_scope('base_model'): base_model = VGG16(include_top=False, input_shape=(224,224,3)) with tf.variable_scope('xxx'): model = models.Sequential() model.add(base_model) model.add(layers.Flatten()) model.add(layers.Dense(10))
# 获取需要训练的变量 trainable_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'xxx') trainable_var
[<tf.Variable 'xxx_2/dense_1/kernel:0' shape=(25088, 10) dtype=float32_ref>,
<tf.Variable 'xxx_2/dense_1/bias:0' shape=(10,) dtype=float32_ref>]
# 定义tf优化器进行训练,这里假设有一个loss loss = model.output / 2; # 随便定义的,方便演示 train_step = tf.train.AdamOptimizer().minimize(loss, var_list=trainable_var)
总结
在keras与TensorFlow混编中,keras中设置trainable=False对于TensorFlow而言并不起作用
解决的办法就是通过variable_scope对变量进行区分,在通过tf.get_collection来获取需要训练的变量,最后通过tf优化器中var_list指定训练
以上这篇解决Keras TensorFlow 混编中 trainable=False设置无效问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]