layer的两个函数:
get_weights(), set_weights(weights)。
详情请参考about-keras-layers。
补充知识:Keras层的共同函数
关于Keras层:
所有Keras层都有很多共同的函数:
layer.get_weights(): # 以Numpy矩阵的形式返回层的权重。
layer.set_weights(weights): # 从Numpy矩阵中设置层的权重(与get_weights的输出形状相同)。
layer.get_config(): # 返回包含层配置的字典。
图层的重置:
layer = Dense(32) config = layer.get_config() reconstructed_layer = Dense.from_config(config) # from keras import layers config = layer.get_config() layer = layers.deserialize({'class_name': layer.__class__.__name__, 'config': config})
如果一个层具有单个节点, (i.e. 如果它不是共享层), 可以得到它的输入张量,输出张量,输入尺寸和输出尺寸:
layer.input layer.output layer.input_shape layer.output_shape
如果层有多个节点 (层节点和共享层), 可以使用以下函数: 要指明再哪个节点处获得张量,哪个节点处获得张量尺寸。
layer.get_input_at(node_index) layer.get_output_at(node_index) layer.get_input_shape_at(node_index) layer.get_output_shape_at(node_index)
以上这篇Keras设置以及获取权重的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
Keras,设置,获取权重
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Keras设置以及获取权重的实现”评论...
更新日志
2024年12月25日
2024年12月25日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]