keras自定义函数时候,正常在模型里自己写好自定义的函数,然后在模型编译的那行代码里写上接口即可。如下所示,focal_loss和fbeta_score是我们自己定义的两个函数,在model.compile加入它们,metrics里‘accuracy'是keras自带的度量函数。
def focal_loss(): ... return xx def fbeta_score(): ... return yy model.compile(optimizer=Adam(lr=0.0001), loss=[focal_loss],metrics=['accuracy',fbeta_score] )
训练好之后,模型加载也需要再额外加一行,通过load_model里的custom_objects将我们定义的两个函数以字典的形式加入就能正常加载模型啦。
weight_path = './weights.h5'
model = load_model(weight_path,custom_objects={'focal_loss': focal_loss,'fbeta_score':fbeta_score})
补充知识:keras如何使用自定义的loss及评价函数进行训练及预测
1.有时候训练模型,现有的损失及评估函数并不足以科学的训练评估模型,这时候就需要自定义一些损失评估函数,比如focal loss损失函数及dice评价函数 for unet的训练。
2.在训练建模中导入自定义loss及评估函数。
#模型编译时加入自定义loss及评估函数 model.compile(optimizer = Adam(lr=1e-4), loss=[binary_focal_loss()], metrics=['accuracy',dice_coef]) #自定义loss及评估函数 def binary_focal_loss(gamma=2, alpha=0.25): """ Binary form of focal loss. 适用于二分类问题的focal loss focal_loss(p_t) = -alpha_t * (1 - p_t)**gamma * log(p_t) where p = sigmoid(x), p_t = p or 1 - p depending on if the label is 1 or 0, respectively. References: https://arxiv.org/pdf/1708.02002.pdf Usage: model.compile(loss=[binary_focal_loss(alpha=.25, gamma=2)], metrics=["accuracy"], optimizer=adam) """ alpha = tf.constant(alpha, dtype=tf.float32) gamma = tf.constant(gamma, dtype=tf.float32) def binary_focal_loss_fixed(y_true, y_pred): """ y_true shape need be (None,1) y_pred need be compute after sigmoid """ y_true = tf.cast(y_true, tf.float32) alpha_t = y_true * alpha + (K.ones_like(y_true) - y_true) * (1 - alpha) p_t = y_true * y_pred + (K.ones_like(y_true) - y_true) * (K.ones_like(y_true) - y_pred) + K.epsilon() focal_loss = - alpha_t * K.pow((K.ones_like(y_true) - p_t), gamma) * K.log(p_t) return K.mean(focal_loss) return binary_focal_loss_fixed #''' #smooth 参数防止分母为0 def dice_coef(y_true, y_pred, smooth=1): intersection = K.sum(y_true * y_pred, axis=[1,2,3]) union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) return K.mean( (2. * intersection + smooth) / (union + smooth), axis=0)
注意在模型保存时,记录的loss函数名称:你猜是哪个
a:binary_focal_loss()
b:binary_focal_loss_fixed
3.模型预测时,也要加载自定义loss及评估函数,不然会报错。
该告诉上面的答案了,保存在模型中loss的名称为:binary_focal_loss_fixed,在模型预测时,定义custom_objects字典,key一定要与保存在模型中的名称一致,不然会找不到loss function。所以自定义函数时,尽量避免使用我这种函数嵌套的方式,免得带来一些意想不到的烦恼。
model = load_model('./unet_' + label + '_20.h5',custom_objects={'binary_focal_loss_fixed': binary_focal_loss(),'dice_coef': dice_coef})
以上这篇keras自定义损失函数并且模型加载的写法介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]