我就废话不多说了,大家还是直接看代码吧!

    #参数恢复
    self.sess=tf.Session()
    saver = tf.train.import_meta_graph(os.path.join(model_fullpath,'model.ckpt-7.meta'))
    module_file = tf.train.latest_checkpoint(model_fullpath)
    saver.restore(self.sess, module_file)
    variable_names = [v.name for v in tf.trainable_variables()]
    variable_names = [v.name for v in tf.global_variables()]
    values = self.sess.run(variable_names)
    i=0
    for k, v in zip(variable_names, values):
      i+=1
      if k.find('encode')!=-1:
        print(f"第 {i} 个variable")
        print("Variable: ", k)
        print("Shape: ", v.shape)
        print(v)
    graph = tf.get_default_graph()
    all_ops = graph.get_operations()
    for el in all_ops:
      print(el.name)

输出结果:

打印tensorflow恢复模型中所有变量与操作节点方式

补充知识:TensorFlow:.ckpt文件与.ckpt.meta和.ckpt.index以及.pb文件之间的关系是什么?

再使用 tf.train.Saver() 保存参数通常会生成以下文件

打印tensorflow恢复模型中所有变量与操作节点方式

那么这些文件具体是什么呢?

.ckpt文件:是旧版本的输出saver.save(sess),相当于你的.ckpt-data

“checkpoint”:文件仅用于告知某些TF函数,这是最新的检查点文件。

.ckpt-meta:包含元图,即计算图的结构,没有变量的值(基本上你可以在tensorboard / graph中看到)。

.ckpt-data:包含所有变量的值,没有结构。

.ckpt-index:可能是内部需要的某种索引来正确映射前两个文件,它通常不是必需的

你可以只用 .ckpt-meta 和恢复一个模型 .ckpt-data

要在python中恢复模型,您通常会使用元数据和数据文件(但您也可以使用该.pb文件):

saver = tf.train.import_meta_graph(path_to_ckpt_meta) saver.restore(sess, path_to_ckpt_data)

该.pb文件可以保存您的整个图表(元+数据)

要在c ++中加载和使用(但不训练)图形,您通常会使用它来创建freeze_graph,它会.pb从元数据和数据创建文件。

要小心,(至少在以前的TF版本和某些人中)py提供的功能freeze_graph不能正常工作,所以你必须使用脚本版本。

以上这篇打印tensorflow恢复模型中所有变量与操作节点方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
tensorflow,恢复节点,打印变量

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。