前言

本文将介绍如何使用ONNX将PyTorch中训练好的模型(.pt、.pth)型转换为ONNX格式,然后将其加载到Caffe2中。需要安装好onnx和Caffe2。

PyTorch及ONNX环境准备

为了正常运行ONNX,我们需要安装最新的Pytorch,你可以选择源码安装:

git clone --recursive https://github.com/pytorch/pytorch
cd pytorch
mkdir build && cd build
sudo cmake .. -DPYTHON_INCLUDE_DIR=/usr/include/python3.6 -DUSE_MPI=OFF
make install
export PYTHONPATH=$PYTHONPATH:/opt/pytorch/build

其中 "/opt/pytorch/build"是前面build pytorch的目。

or conda安装

conda install pytorch torchvision -c pytorch

安装ONNX的库

conda install -c conda-forge onnx

onnx-caffe2 安装

pip3 install onnx-caffe2

Pytorch模型转onnx

在PyTorch中导出模型通过跟踪工作。要导出模型,请调用torch.onnx.export()函数。这将执行模型,记录运算符用于计算输出的轨迹。因为_export运行模型,我们需要提供输入张量x。

这个张量的值并不重要; 它可以是图像或随机张量,只要它是正确的大小。更多详细信息,请查看torch.onnx documentation文档。

# 输入模型
example = torch.randn(batch_size, 1, 224, 224, requires_grad=True)

# 导出模型
torch_out = torch_out = torch.onnx.export(model, # model being run
    example, # model input (or a tuple for multiple inputs)
    "peleeNet.onnx",
 verbose=False, # store the trained parameter weights inside the model file
 training=False,
 do_constant_folding=True,
 input_names=['input'],
 output_names=['output']) 

其中torch_out是执行模型后的输出,通常以忽略此输出。转换得到onnx后可以使用OpenCV的 cv::dnn::readNetFromONNX or cv::dnn::readNet进行模型加载推理了。

还可以进一步将onnx模型转换为ncnn进而部署到移动端。这就需要ncnn的onnx2ncnn工具了.

编译ncnn源码,生成 onnx2ncnn。

其中onnx转换模型时有一些冗余,可以使用用工具简化一些onnx模型。

pip3 install onnx-simplifier

简化onnx模型

python3 -m onnxsim pnet.onnx pnet-sim.onnx

转换成ncnn

onnx2ncnn pnet-sim.onnx pnet.param pnet.bin

ncnn 加载模型做推理

Pytorch模型转torch script

pytorch 加入libtorch前端处理,集体步骤为:

Pytorch转onnx、torchscript方式

以mtcnn pnet为例

# convert pytorch model to torch script
# An example input you would normally provide to your model's forward() method.
example = torch.rand(1, 3, 12, 12).to(device)
# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(pnet, example)
# Save traced model
traced_script_module.save("pnet_model_final.pth")

C++调用如下所示:

#include <torch/script.h> // One-stop header.
#include <iostream>
#include <memory>
int main(int argc, const char* argv[]) 
{
 if (argc != 2) 
 {
 std::cerr << "usage: example-app <path-to-exported-script-module>\n";
 return -1;
 }

 // Deserialize the ScriptModule from a file using torch::jit::load().
 std::shared_ptr<torch::jit::script::Module> module = torch::jit::load(argv[1]);

 assert(module != nullptr);
 std::cout << "ok\n";
}
标签:
Pytorch,onnx,torchscript

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“Pytorch转onnx、torchscript方式”

暂无“Pytorch转onnx、torchscript方式”评论...

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。