使用散点图矩阵图,可以两两发现特征之间的联系
pd.plotting.scatter_matrix(frame, alpha=0.5, c,figsize=None, ax=None, diagonal='hist', marker='.', density_kwds=None,hist_kwds=None, range_padding=0.05, **kwds)
1、frame,pandas dataframe对象
2、alpha, 图像透明度,一般取(0,1]
3、figsize,以英寸为单位的图像大小,一般以元组 (width, height) 形式设置
4、ax,可选一般为none
5、diagonal,必须且只能在{‘hist', ‘kde'}中选择1个,'hist'表示直方图(Histogram plot),'kde'表示核密度估计(Kernel Density Estimation);该参数是scatter_matrix函数的关键参数
6、marker,Matplotlib可用的标记类型,如'.',',','o'等
7、density_kwds,(other plotting keyword arguments,可选),与kde相关的字典参数
8、hist_kwds,与hist相关的字典参数
9、range_padding,(float, 可选),图像在x轴、y轴原点附近的留白(padding),该值越大,留白距离越大,图像远离坐标原点
10、kwds,与scatter_matrix函数本身相关的字典参数
11、c,颜色
效果如下图
以 sklearn的iris样本为数据集
import matplotlib.pyplot as plt from scipy import sparse import numpy as np import matplotlib as mt import pandas as pd from IPython.display import display from sklearn.datasets import load_iris import sklearn as sk from sklearn.model_selection import train_test_split iris=load_iris() #print(iris) X_train,X_test,y_train,y_test = train_test_split(iris['data'],iris['target'],random_state=0) iris_dataframe = pd.DataFrame(X_train,columns=iris.feature_names) grr = pd.plotting.scatter_matrix(iris_dataframe,c=y_train,figsize=(15,15),marker='o',hist_kwds={'bins':20},s=60,alpha=.8) plt.show()
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]