直接列出函数:

numpy.interp(x, xp, fp, left=None, right=None, period=None)

x - 表示将要计算的插值点x坐标

xp - 表示已有的xp数组

fp - 表示对应于已有的xp数组的值

left - 表示当x值在xp中最小值左边时,x对应y的值为left

right - 表示当x值在xp中最大值右边时,x对应y的值为right

(left和right表示x在xp的域外时,y的取值)

example:

1.

import numpy as np

xp = [1, 2, 3]
fp = [3, 2, 0]

print(np.interp(2.5, xp, fp))

output:1.0

2.

import numpy as np

xp = [1, 2, 3]
fp = [3, 2, 0]

x = [0, 1, 1.5, 2.72, 3.14]

print(np.interp(x, xp, fp))

output:[3. 3. 2.5 0.56 0. ]

3.

import numpy as np

xp = [1, 2, 3]
fp = [3, 2, 0]

x = [0, 1, 1.5, 2.72, 3.14]

print(np.interp(x, xp, fp, -99, 99))

output:[-99. 3. 2.5 0.56 99. ]

补充知识:numpy 的一维插值函数interp

numpy.interp(x, xp, fp, left=None, right=None, period=None)

返回离散数据的一维分段线性插值结果,浮点数或复数(对应于fp值)或ndarray. 插入数据的纵坐标,和x形状相同。

x: 数组,待插入数据的横坐标.

xp: 一维浮点数序列,原始数据点的横坐标,如果period参数没有指定那么就必须是递增的。否则,在使用xp = xp % period正则化之后,xp在内部进行排序.

fp: 一维浮点数或复数序列原始数据点的纵坐标,和xp序列等长.

left: 可选参数,类型为浮点数或复数(对应于fp值),当x < xp[0]时的插值返回值,默认为fp[0].

right: 可选参数,类型为浮点数或复数(对应于fp值),当x > xp[-1]时的插值返回值,默认为fp[-1].

period: None或者浮点数,可选参数. 横坐标的周期. 此参数使得可以正确插入angular x-coordinates. 如果该参数被设定,那么忽略left参数和right参数。

插入横坐标在原函数横坐标范围内

x = 2.5     # 要插入值的横坐标
xp = [1, 2, 3]   # 要插入序列的横坐标
fp = [3, 2, 0]   # 要插入序列的纵坐标
y = np.interp(x, xp, fp) # 返回插入值的纵坐标 1.0
plt.plot(xp, fp, '-o')
plt.plot(x, y, 'x')
plt.show()

插入横坐标在原函数横坐标外(默认)

x = [0, 1, 1.5, 2.72, 3.14] # 左侧外部默认为原函数最左侧函数值,右侧默认为右侧
xp = [1, 2, 3]
fp = [3, 2, 0]
y = np.interp(x, xp, fp) # array([ 3. ,3. ,2.5 ,0.56, 0. ])
plt.plot(xp, fp, '-o')
plt.plot(x, y, 'x')
plt.show()

插入横坐标在原函数横坐标外(指定)

x = 3.14
xp = [1, 2, 3]
fp = [3, 2, 0]
UNDEF = -99.0
y = np.interp(x, xp, fp, right=UNDEF) # -99.0
plt.plot(xp, fp, '-o')
plt.plot(x, y, 'x')
plt.show()

正弦插值

x = np.linspace(0, 2 * np.pi, 10) # 在0到2pi的范围内均匀取10个点
y = np.sin(x)      # sin函数x横坐标对应的y值
xvals = np.linspace(0, 2 * np.pi, 50) # 均匀取50个
yinterp = np.interp(xvals, x, y) # 在映射关系为y的x中插入xvals
plt.plot(x, y, 'o')
plt.plot(xvals, yinterp, '-x')
plt.show()

以上这篇Numpy一维线性插值函数的用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Numpy,一维线性插值,函数

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“Numpy一维线性插值函数的用法”

暂无“Numpy一维线性插值函数的用法”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?