周五的时候计算出来一条线路,但是计算出来的只是类似与
0->10->19->2->..0
这样的线路只有写代码的人才能看的懂无法直观的表达出来,让其它同事看的不清晰,所以考虑怎样直观的把线路图画出来。
&esp;"htmlcode">
import matplotlib.pyplot as plt import numpy import matplotlib.colors as colors import matplotlib.cm as cmx
后面两个主要是用于处理颜色的。
准备数据
_locations = [ (4, 4), # depot (4, 4), # unload depot_prime (4, 4), # unload depot_second (4, 4), # unload depot_fourth (4, 4), # unload depot_fourth (4, 4), # unload depot_fifth (2, 0), (8, 0), # locations to visit (0, 1), (1, 1), (5, 2), (7, 2), (3, 3), (6, 3), (5, 5), (8, 5), (1, 6), (2, 6), (3, 7), (6, 7), (0, 8), (7, 8) ]
画图
plt.figure(figsize=(10, 10)) p1 = [l[0] for l in _locations] p2 = [l[1] for l in _locations] plt.plot(p1[:6], p2[:6], 'g*', ms=20, label='depot') plt.plot(p1[6:], p2[6:], 'ro', ms=15, label='customer') plt.grid(True) plt.legend(loc='lower left') way = [[0, 12, 18, 17, 16, 4, 14, 10, 11, 13, 5], [0, 6, 9, 8, 20, 3], [0, 19, 21, 15, 7, 2]] # cmap = plt.cm.jet cNorm = colors.Normalize(vmin=0, vmax=len(way)) scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap) for k in range(0, len(way)): way0 = way[k] colorVal = scalarMap.to_rgba(k) for i in range(0, len(way0)-1): start = _locations[way0[i]] end = _locations[way0[i+1]] # plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], length_includes_head=True, # head_width=0.2, head_length=0.3, fc='k', ec='k', lw=2, ls=lineStyle[k], color='red') plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], length_includes_head=True, head_width=0.2, lw=2, color=colorVal) plt.show()
cmap = plt.cm.jet cNorm = colors.Normalize(vmin=0, vmax=len(way)) scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)
cmap可以理解为颜色库,cNorm设置颜色的范围,有几条线路就设置几种颜色,scalarMap颜色生成完毕。最后在绘图的时候,根据索引获得相应的颜色就可以了。
结果如下:
补充知识:Python包matplotlib绘图--如何标注某点--附代码
# -*- coding: utf-8 -*- import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np plt.style.use('classic') plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示 plt.rcParams['axes.unicode_minus'] = False #解决符号无法显示 x=np.array([1,2,3,4,5,6,7,8]) y1=np.array([3,5,35,300,800,600,1200,4000]) y2=np.array([8,14,94,703,1300,1660,2801,12768]) fig1 = plt.figure() ax = plt.axes() ax.plot(x, y2,label='时间/秒') ax.set(xlabel='目标函数个数', ylabel='程序运行时间',title='多目标收敛速度') plt.hlines(703, 0, 4, colors='r', linestyle="--") plt.text(0, 703, "703") plt.hlines(1300, 0, 5, colors='g', linestyle="--") plt.text(0, 1300, "1300") # annotate plt.annotate("703秒", (4,703), xycoords='data', xytext=(4.2, 2000), arrowprops=dict(arrowstyle='->')) plt.annotate("94秒", (3,94), xycoords='data', xytext=(3.5, 2000), arrowprops=dict(arrowstyle='->')) plt.annotate("14秒", (2,14), xycoords='data', xytext=(2.5, 2000), arrowprops=dict(arrowstyle='->')) plt.annotate("8秒", (1,8), xycoords='data', xytext=(1.5, 2000), arrowprops=dict(arrowstyle='->')) plt.legend() plt.show() fig1.savefig('my_figure1.png')
import numpy as np from matplotlib import pyplot as plt from matplotlib.path import Path from matplotlib.patches import PathPatch # Use seaborn to change the default graphics to something nicer import seaborn as sns # And set a nice color palette sns.set_color_codes('deep') # Create the plot object fig, ax = plt.subplots(figsize=(5, 4)) x = np.linspace(0, 1000) # Add finishing constraint: x2 <= 100/2 - x1/2 plt.plot(x, 50/4 - 3*x/4, linewidth=3, label='First constraint') plt.fill_between(x, 0, 100/2 - x/2, alpha=0.1) # Add carpentry constraint: x2 <= 80 - x1 plt.plot(x, 30 - 2*x, linewidth=3, label='Second constraint') plt.fill_between(x, 0, 100 - 2*x, alpha=0.1) # Add non-negativity constraints plt.plot(np.zeros_like(x), x, linewidth=3, label='$x$ Sign restriction') plt.plot(x, np.zeros_like(x), linewidth=3, label='$y$ Sign restriction') #==================================================== # This part is different from giapetto_feasible.py # Plot the possible (x1, x2) pairs pairs = [(x, y) for x in np.arange(101) for y in np.arange(101) if (300*x + 400*y) <= 5000 and (200*x + 100*y) <= 3000] # Split these into our variables chairs, tables = np.hsplit(np.array(pairs), 2) # Caculate the objective function at each pair z =8*chairs + 9*tables # Plot the results plt.scatter(chairs, tables, c=z, cmap='jet', edgecolor='gray', alpha=0.5, label='Profit at each point', zorder=3) # Colorbar cb = plt.colorbar() cb.set_label('Profit Colormap ($)') #==================================================== # Labels and stuff plt.xlabel('Package A') plt.ylabel('Package B') plt.xlim(-0.5, 20) plt.ylim(-0.5, 20) plt.legend() fig01 = plt.figure() plt.show()
以上这篇使用Matplotlib绘制不同颜色的带箭头的线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“使用Matplotlib绘制不同颜色的带箭头的线实例”评论...
更新日志
2024年11月08日
2024年11月08日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]