最近准备使用Python+Hadoop+Pandas进行一些深度的分析与机器学习相关工作。(当然随着学习过程的进展,现在准备使用Python+Spark+Hadoop这样一套体系来搭建后续的工作环境),当然这是后话。
但是这项工作首要条件就是将Python与Hadoop进行打通,本来认为很容易的一项工作,没有想到竟然遇到各种坑,花费了整整半天时间。后来也在网上看到大家在咨询相同的问题,但是真正解决这个问题的帖子又几乎没有,所以现在将Python连接Hadoop数据库过程中遇到的各种坑进行一个汇总,然后与大家进行分享,以尽量避免大家花费宝贵的时间。
(说明一下:这篇文章中的各种坑的解决,翻阅了网上无数的帖子,最好一GIT上面一个帖子的角落里面带了这么一句,否则很容易翻船。但是由于帖子太多,所以我就不一一帖出来了)
首先是选组件,我选择的是使用:impala+Python3.7来连接Hadoop数据库,如果你不是的话,就不要浪费宝贵时间继续阅读了。
执行的代码如下:
import impala.dbapi as ipdb conn = ipdb.connect(host="192.168.XX.XXX",port=10000,user="xxx",password="xxxxxx",database="xxx",auth_mechanism='PLAIN') cursor = conn.cursor() #其中xxxx是表名,为了不涉及到公司的信息,我把表名隐藏掉了,大家自己换成自己数据库表名 cursor.execute('select * From xxxx') print(cursor.description) # prints the result set's schema for rowData in cursor.fetchall(): print(rowData) conn.close()
坑一:提示语法错误
现象:
/Users/wangxxin/miniconda3/bin/python3.7 /Users/wangxxin/Documents/Python/PythonDataAnalyze/project/knDt/pyHiveTest.py
Traceback (most recent call last):
File "/Users/wangxxin/Documents/Python/PythonDataAnalyze/project/knDt/pyHiveTest.py", line 1, in <module>
import impala.dbapi as ipdb
File "/Users/wangxxin/miniconda3/lib/python3.7/site-packages/impala/dbapi.py", line 28, in <module>
import impala.hiveserver2 as hs2
File "/Users/wangxxin/miniconda3/lib/python3.7/site-packages/impala/hiveserver2.py", line 340
async=True)
解决办法:将参数async全部修改为“async_”(当然这个可以随便,只要上下文一致,并且不是关键字即可),原因:在Python3.0中,已经将async标为关键词,如果再使用async做为参数,会提示语法错误;应该包括以下几个地方:
#hiveserver2.py文件338行左右 op = self.session.execute(self._last_operation_string, configuration, async_=True) #hiveserver2.py文件1022行左右 def execute(self, statement, configuration=None, async_=False): req = TExecuteStatementReq(sessionHandle=self.handle, statement=statement, confOverlay=configuration, runAsync=async_)
坑二:提供的Parser.py文件有问题,加载的时候会报错
解决办法:
#根据网上的意见对原代码进行调整 elif url_scheme in ('c', 'd', 'e', 'f'): with open(path) as fh: data = fh.read() elif url_scheme in ('http', 'https'): data = urlopen(path).read() else: raise ThriftParserError('ThriftPy does not support generating module ' 'with path in protocol \'{}\''.format( url_scheme))
以上的坑一、坑二建议你直接修改。这两点是肯定要调整的;
坑三:上面的两个问题处理好之后,继续运行,会报如下错误:
TProtocolException: TProtocolException(type=4)
解决办法:
原因是由于connect方法里面没有增加参数:auth_mechanism='PLAIN,修改如下所示:
import impala.dbapi as ipdb conn = ipdb.connect(host="192.168.XX.XXX",port=10000,user="xxx",password="xxxxxx",database="xxx",auth_mechanism='PLAIN')`
坑四:问题三修改好之后,继续运行程序,你会发现继续报错:
AttributeError: 'TSocket' object has no attribute 'isOpen'
解决办法:
由于是thrift-sasl的版本太高了(0.3.0),故将thrift-sasl的版本降级到0.2.1
pip uninstall thrift-sasl pip install thrift-sasl==0.2.1
坑五:处理完这个问题后,继续运行,继续报错(这个时间解决有点快崩溃的节奏了,但是请坚持住,其实你已经很快接近最后结果了):
thriftpy.transport.TTransportException: TTransportException(type=1, message="Could not start SASL: b'Error in sasl_client_start (-4) SASL(-4): no mechanism available: Unable to find a callback: 2'")
解决办法:这个是最麻烦的,也是目前最难找到解决办法的。
I solved the issue, had to uninstall the package SASL and install PURE-SASL, when impyla can´t find the sasl package it works with pure-sasl and then everything goes well.
主要原因其实还是因为sasl和pure-sasl有冲突,这种情况下,直接卸载sasl包就可能了。
pip uninstall SASL
坑六:但是执行完成,继续完成,可能还是会报错:
TypeError: can't concat str to bytes
定位到错误的最后一条,在init.py第94行(标黄的部分)
header = struct.pack(">BI", status, len(body)) #按照网上的提供的办法增加对BODY的处理 if (type(body) is str): body = body.encode() self._trans.write(header + body) self._trans.flush()
经过以上步骤,大家应该可以连接Hive库查询数据,应该是不存在什么问题了。
最后总结一下,连接Hadoop数据库中各种依赖包,请大家仔细核对一下依赖包(最好是依赖包相同,也就是不多不少[我说的是相关的包],这样真的可以避免很多问题的出现)
序号
包名
版本号
安装命令行
1
pure_sasl
0.5.1
pip install pure_sasl==0.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
2
thrift
0.9.3
pip install thrift==0.9.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
3
bitarray
0.8.3
pip install bitarray==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
4
thrift_sasl
0.2.1
pip install thrift_sasl==0.2.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
5
thriftpy
0.3.9
pip install thriftpy==0.3.9 -i https://pypi.tuna.tsinghua.edu.cn/simple
6
impyla
0.14.1
pip install impyla==0.14.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
建议按顺序安装,我这边之前有依赖包的问题,但是最终我是通过conda进行安装的。
其中在安装thriftpy、thrift_sasl、impyla报的时候报错,想到自己有conda,直接使用conda install,会自动下载依赖的包,如下所示(供没有conda环境的同学参考)
package
build
size
ply-3.11
py37_0
80 KB
conda-4.6.1
py37_0
1.7 MB
thriftpy-0.3.9
py37h1de35cc_2
171 KB
祝您好运!如果在实际过程中还是遇到各种各样的问题,请你留言。
最后有一点提示:
SQL里面不要带分号,否则会报错。但是这个就不是环境问题了。报错如下:
impala.error.HiveServer2Error: Error while compiling statement: FAILED: ParseException line 2:83 cannot recogniz
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]