图像直方图
图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。
图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。在实际工程中,图像直方图在特征提取、图像匹配等方面都有很好的应用。
直方图比较
1. 图像相似度比较
如果我们有两张图像,并且这两张图像的直方图一样,或者有极高的相似度,那么在一定程度上,我们可以认为这两幅图是一样的,这就是直方图比较的应用之一。
2. 分析图像之间关系
两张图像的直方图反映了该图像像素的分布情况,可以利用图像的直方图,来分析两张图像的关系。
直方图比较函数
cv2.compareHist(H1, H2, method)
其中:
- H1,H2 分别为要比较图像的直方图
- method - 比较方式
比较方式(method)
- 相关性比较 (method=cv.HISTCMP_CORREL) 值越大,相关度越高,最大值为1,最小值为0
- 卡方比较(method=cv.HISTCMP_CHISQR 值越小,相关度越高,最大值无上界,最小值0
- 巴氏距离比较(method=cv.HISTCMP_BHATTACHARYYA) 值越小,相关度越高,最大值为1,最小值为0
代码实现
import cv2 as cv import numpy as np from matplotlib import pyplot as plt def create_rgb_hist(image): """"创建 RGB 三通道直方图(直方图矩阵)""" h, w, c = image.shape # 创建一个(16*16*16,1)的初始矩阵,作为直方图矩阵 # 16*16*16的意思为三通道每通道有16个bins rgbhist = np.zeros([16 * 16 * 16, 1], np.float32) bsize = 256 / 16 for row in range(h): for col in range(w): b = image[row, col, 0] g = image[row, col, 1] r = image[row, col, 2] # 人为构建直方图矩阵的索引,该索引是通过每一个像素点的三通道值进行构建 index = int(b / bsize) * 16 * 16 + int(g / bsize) * 16 + int(r / bsize) # 该处形成的矩阵即为直方图矩阵 rgbhist[int(index), 0] += 1 plt.ylim([0, 10000]) plt.grid(color='r', linestyle='--', linewidth=0.5, alpha=0.3) return rgbhist def hist_compare(image1, image2): """直方图比较函数""" # 创建第一幅图的rgb三通道直方图(直方图矩阵) hist1 = create_rgb_hist(image1) # 创建第二幅图的rgb三通道直方图(直方图矩阵) hist2 = create_rgb_hist(image2) # 进行三种方式的直方图比较 match1 = cv.compareHist(hist1, hist2, cv.HISTCMP_BHATTACHARYYA) match2 = cv.compareHist(hist1, hist2, cv.HISTCMP_CORREL) match3 = cv.compareHist(hist1, hist2, cv.HISTCMP_CHISQR) print("巴氏距离:%s, 相关性:%s, 卡方:%s" %(match1, match2, match3)) src1 = cv.imread("diff1.PNG") cv.imshow("diff1", src1) src2 = cv.imread("diff2.PNG") cv.imshow("diff2", src2) plt.subplot(1,2,1) plt.title("diff1") plt.plot(create_rgb_hist(src1)) plt.subplot(1,2,2) plt.title("diff2") plt.plot(create_rgb_hist(src2)) hist_compare(src1, src2) plt.show() cv.waitKey(0) cv.destroyAllWindows()
巴氏距离:0.3116175231543461, 相关性:0.8805851455583134,
卡方:154379.82963705878
从计算得到的三个比较值可以发现巴氏距离较低,相关性较高,可以简单认为这两幅图的相似度比较大。
例如下面两幅图
巴氏距离:0.8939676325760126, 相关性:0.03202528698270991,
卡方:503948.24201884575
从计算得到的三个比较值可以发现巴氏距离很高,相关性系数很低,可以简单认为这两幅图的相似度非常小。
总结
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]