本文实例讲述了Python实现的北京积分落户数据分析。分享给大家供大家参考,具体如下:
北京积分落户状况 获取数据(爬虫/文件下载)—> 分析 (维度—指标)
- 从公司维度分析不同公司对落户人数指标的影响 , 即什么公司落户人数最多也更容易落户
- 从年龄维度分析不同年龄段对落户人数指标影响 , 即什么年龄段落户人数最多也更容易落户
- 从百家姓维度分析不同姓对落户人数的指标影响 , 即什么姓的落户人数最多即也更容易落户
- 不同分数段的占比情况
# 导入库 import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import font_manager
#读取数据(文件) , 并查看数据相应结构和格式 lh_data = pd.read_csv('./bj_luohu.csv',index_col='id',usecols=(0,1,2,3,4)) lh_data.describe()
# 1. 公司维度---人数指标 # 对公司进行分组聚合 , 并查看分数的相关数据 (个数 , 总分数 , 平均分 , 人数占比) group_company = lh_data.groupby('company',as_index=False)['score'].agg(['count','sum','mean']).sort_values('count',ascending=False) #更改列名称 group_company.rename(columns={'count':'people_num','sum':'score_sum','mean':'score_mean'},inplace=True) #定一个函数 , 得到占比 def num_percent(people_num=1,people_sum=1): return str('%.2f'%(people_num / people_sum * 100))+'%' #增加一个占比列 group_company['people_percent'] = group_company['people_num'].apply(num_percent,people_sum=lh_data['name'].count()) #查看只有一个人落户的公司 布尔索引 group_company[group_company['people_num'] == 1] group_company.head(10)
# 2.年龄维度----人数指标 #将出生年月转为年龄 lh_data['age'] = (pd.to_datetime('2019-09') - pd.to_datetime(lh_data['birthday'])) / pd.Timedelta('365 days') # 分桶 lh_data.describe() bins_age = pd.cut(lh_data['age'],bins=np.arange(30,70,5)) bins_age_group = lh_data['age'].groupby(bins_age).count() bins_age_group.index = [str(i.left) + '~' + str(i.right) for i in bins_age_group.index] bins_age_group.plot(kind='bar',alpha=1,rot=60,grid=0.2)
# 3. 姓维度----人数指标 # 增加姓列 #定义一个函数 得到姓名的姓 def get_fname(name): if len(str(name)) <= 3: return str(name[0]) else: return str(name[0:2]) lh_data['fname'] = lh_data['name'].apply(get_fname) # 对姓进行分组 group_fname = lh_data.groupby('fname')['score'].agg(['count','sum','mean']).sort_values('count',ascending=False) # 更改列名称 group_fname.rename(columns={'count':'people_num','sum':'people_sum','mean':'score_mean'},inplace=True) # 增加占比列 group_fname['people_percent'] = group_fname['people_num'].apply(num_percent,people_sum=lh_data['name'].count()) group_fname.head(10)
# 4. 查看分数段占比 # 分桶 将分数划分为一个个的区间 bins_score = pd.cut(lh_data['score'],np.arange(90,130,5)) # 将分数装入对应的桶里 bins_score_group = lh_data['score'].groupby(bins_score).count() # 更改索引显示格式 bins_score_group.index = [str(i.left)+'~'+str(i.right) for i in bins_score_group.index] bins_score_group.plot(kind='bar',alpha=1,rot=60,grid=0.2,title='score-people_num',colormap='RdBu_r')
总结
1.pandas的绘图方法不够灵活 , 功能也不够强大 , 最好还是使用matplotlib绘图
2.记住数据分析最重要的两个方法 分组: groupby() 和 分桶:cut() , 前者一般用于离散的数据(姓,公司) , 后者用于连续数据 (年龄段,分数段)
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python实现的北京积分落户数据分析示例”评论...
更新日志
2024年11月08日
2024年11月08日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]