代码:
#!/usr/bin/python # -*- coding: UTF-8 -*- # get annotation object bndbox location import os import cv2 try: import xml.etree.cElementTree as ET #解析xml的c语言版的模块 except ImportError: import xml.etree.ElementTree as ET ##get object annotation bndbox loc start def GetAnnotBoxLoc(AnotPath):#AnotPath VOC标注文件路径 tree = ET.ElementTree(file=AnotPath) #打开文件,解析成一棵树型结构 root = tree.getroot()#获取树型结构的根 ObjectSet=root.findall('object')#找到文件中所有含有object关键字的地方,这些地方含有标注目标 ObjBndBoxSet={} #以目标类别为关键字,目标框为值组成的字典结构 for Object in ObjectSet: ObjName=Object.find('name').text BndBox=Object.find('bndbox') x1 = int(BndBox.find('xmin').text)#-1 #-1是因为程序是按0作为起始位置的 y1 = int(BndBox.find('ymin').text)#-1 x2 = int(BndBox.find('xmax').text)#-1 y2 = int(BndBox.find('ymax').text)#-1 BndBoxLoc=[x1,y1,x2,y2] if ObjName in ObjBndBoxSet: ObjBndBoxSet[ObjName].append(BndBoxLoc)#如果字典结构中含有这个类别了,那么这个目标框要追加到其值的末尾 else: ObjBndBoxSet[ObjName]=[BndBoxLoc]#如果字典结构中没有这个类别,那么这个目标框就直接赋值给其值吧 return ObjBndBoxSet ##get object annotation bndbox loc end def display(objBox,pic): img = cv2.imread(pic) for key in objBox.keys(): for i in range(len(objBox[key])): cv2.rectangle(img, (objBox[key][i][0],objBox[key][i][1]), (objBox[key][i][2], objBox[key][i][3]), (0, 0, 255), 2) cv2.putText(img, key, (objBox[key][i][0],objBox[key][i][1]), cv2.FONT_HERSHEY_COMPLEX, 1, (255,0,0), 1) cv2.imshow('img',img) cv2.imwrite('display.jpg',img) cv2.waitKey(0) if __name__== '__main__': pic = r"./VOCdevkit/VOC2007/JPEGImages/000282.jpg" ObjBndBoxSet=GetAnnotBoxLoc(r"./VOCdevkit/VOC2007/Annotations/000282.xml") print(ObjBndBoxSet) display(ObjBndBoxSet,pic)
输出结果:
{'chair': [[335, 263, 484, 373]], 'person': [[327, 104, 476, 300], [232, 57, 357, 374], [3, 32, 199, 374], [58, 139, 296, 374]]}
图示:
补充知识:使用python将voc类型标注xml文件对图片进行目标还原,以及批量裁剪特定类
使用标注工具如labelimg对图片物体进行voc类型标注,会生成xml文件,如何判断别人的数据集做的好不好,可以用以下代码进行目标还原。
import xml.etree.cElementTree as ET import cv2 import os import glob def GetAnnotBoxLoc(AnotPath): tree = ET.ElementTree(file=AnotPath) root = tree.getroot() ObjectSet=root.findall('object') ObjBndBoxSet={} for Object in ObjectSet: ObjName=Object.find('name').text BndBox=Object.find('bndbox') x1 = int(BndBox.find('xmin').text) y1 = int(BndBox.find('ymin').text) x2 = int(BndBox.find('xmax').text) y2 = int(BndBox.find('ymax').text) BndBoxLoc=[x1,y1,x2,y2] if ObjName in ObjBndBoxSet: ObjBndBoxSet[ObjName].append(BndBoxLoc) else: ObjBndBoxSet[ObjName]=[BndBoxLoc] return ObjBndBoxSet def GetAnnotName(AnotPath): tree = ET.ElementTree(file=AnotPath) root = tree.getroot() path=root.find('path').text return path def Drawpic(xml_path,result_path): n = 0 xmls = glob.glob(os.path.join(xml_path, '*.xml')) for xml in xmls: n = n + 1 box=GetAnnotBoxLoc(xml) path=GetAnnotName(xml) img = cv2.imread(path) for classes in list(box.keys()): for boxes in box[classes]: if classes == "bad1": cv2.rectangle(img,(int(boxes[0]),int(boxes[1])),(int(boxes[2]),int(boxes[3])),(255,0,0),3) #blue if classes == "bad2": cv2.rectangle(img,(int(boxes[0]),int(boxes[1])),(int(boxes[2]),int(boxes[3])),(0,255,0),3) #green if classes == "bad3": cv2.rectangle(img,(int(boxes[0]),int(boxes[1])),(int(boxes[2]),int(boxes[3])),(0,0,255),3) #red cv2.imwrite(result_path+"/"+str(n)+"_result.jpg", img) print(path,"还原成功") Drawpic("/home/wxy/Dashboard/dataset/VOCdevkit/VOC2012/Annotations","/home/wxy/Dashboard/dataset/VOCdevkit/VOC2012/test")
使用labelimg对图像进行标注,folder目录需要修改一下
import xml.etree.ElementTree as ET import os for i in os.listdir('/home/wxy/Dashboard/dataset/VOCdevkit/VOC2012/Annotations'): tree = ET.parse('/home/wxy/Dashboard/dataset/VOCdevkit/VOC2012/Annotations'+'/'+i) root = tree.getroot() print(root.find('folder').text) root.find('folder').text = 'VOC2012' print(root.find('folder').text) tree.write('/home/wxy/Dashboard/dataset/VOCdevkit/VOC2012/Annotations'+'/'+i)
批量裁剪特定类,xml.dom.minidom好像比xml.etree.cElementTree好用啊。
#coding=utf-8 import xml.dom.minidom import cv2 import os for name in os.listdir("./Annotations/"): dom=xml.dom.minidom.parse("./Annotations/"+name) root=dom.documentElement object_name=root.getElementsByTagName('name') if(object_name[0].firstChild.data == "normal"): print(name) xmin=root.getElementsByTagName('xmin') ymin=root.getElementsByTagName('ymin') xmax=root.getElementsByTagName('xmax') ymax=root.getElementsByTagName('ymax') x_min = int(xmin[0].firstChild.data) y_min = int(ymin[0].firstChild.data) x_max = int(xmax[0].firstChild.data) y_max = int(ymax[0].firstChild.data) img=cv2.imread("./JPEGImages/"+name[:-4]+".jpg") cropped=img[y_min:y_max,x_min:x_max] cv2.imwrite("./cut_jpg/"+name[:-4]+".jpg", cropped)
以上这篇Python读取VOC中的xml目标框实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python读取VOC中的xml目标框实例”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2024年12月28日
2024年12月28日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]