下载的数据是pascal voc2012的数据,已经有annotation了,不过是xml格式的,训练的模型是在Google模型的基础上加了两层网络,因此要在原始图像中裁剪出用于训练的部分图像。
另外,在原来给的标注框的基础上,做了点框的移动。最后同类目标存储在同一文件夹中。
from __future__ import division import os from PIL import Image import xml.dom.minidom import numpy as np ImgPath = 'C:/Users/Desktop/XML_try/img/' AnnoPath = 'C:/Users/Desktop/XML_try/xml/' ProcessedPath = 'C:/Users/Desktop/CropedVOC/' imagelist = os.listdir(ImgPath) for image in imagelist: image_pre, ext = os.path.splitext(image) imgfile = ImgPath + image xmlfile = AnnoPath + image_pre + '.xml' DomTree = xml.dom.minidom.parse(xmlfile) annotation = DomTree.documentElement filenamelist = annotation.getElementsByTagName('filename') #[<DOM Element: filename at 0x381f788>] filename = filenamelist[0].childNodes[0].data objectlist = annotation.getElementsByTagName('object') i = 1 for objects in objectlist: namelist = objects.getElementsByTagName('name') objectname = namelist[0].childNodes[0].data savepath = ProcessedPath + objectname if not os.path.exists(savepath): os.makedirs(savepath) bndbox = objects.getElementsByTagName('bndbox') cropboxes = [] for box in bndbox: x1_list = box.getElementsByTagName('xmin') x1 = int(x1_list[0].childNodes[0].data) y1_list = box.getElementsByTagName('ymin') y1 = int(y1_list[0].childNodes[0].data) x2_list = box.getElementsByTagName('xmax') x2 = int(x2_list[0].childNodes[0].data) y2_list = box.getElementsByTagName('ymax') y2 = int(y2_list[0].childNodes[0].data) w = x2 - x1 h = y2 - y1 obj = np.array([x1,y1,x2,y2]) shift = np.array([[0.8,0.8,1.2,1.2],[0.9,0.9,1.1,1.1],[1,1,1,1],[0.7,0.7,1,1],[1,1,1.2,1.2], [0.7,1,1,1.2],[1,0.7,1.2,1],[(x1+w*1/3)/x1,(y1+h*1/3)/y1,(x2+w*1/3)/x2,(y2+h*1/3)/y2], [(x1-w*1/3)/x1,(y1-h*1/3)/y1,(x2-w*1/3)/x2,(y2-h*1/3)/y2]]) XYmatrix = np.tile(obj,(9,1)) cropboxes = XYmatrix * shift img = Image.open(imgfile) for cropbox in cropboxes: cropedimg = img.crop(cropbox) cropedimg.save(savepath + '/' + image_pre + '_' + str(i) + '.jpg') i += 1
补充知识:python-----截取xml文件画框的图片并保存
from __future__ import division import os from PIL import Image import xml.dom.minidom import numpy as np ImgPath = r'D:\tmp\video_wang_mod\01\00022_8253_0021_3\output/' AnnoPath = r'D:\tmp\video_wang_mod\01\00022_8253_0021_3\Annotations/' ProcessedPath = r'D:\tmp\video_wang_mod\01\00022_8253_0021_3\cut/' imagelist = os.listdir(ImgPath) for image in imagelist: image_pre, ext = os.path.splitext(image) imgfile = ImgPath + image print(imgfile) if not os.path.exists(AnnoPath + image_pre + '.xml' ): continue xmlfile = AnnoPath + image_pre + '.xml' DomTree = xml.dom.minidom.parse(xmlfile) annotation = DomTree.documentElement filenamelist = annotation.getElementsByTagName('filename') filename = filenamelist[0].childNodes[0].data objectlist = annotation.getElementsByTagName('object') i = 1 for objects in objectlist: namelist = objects.getElementsByTagName('name') objectname = namelist[0].childNodes[0].data savepath = ProcessedPath + objectname if not os.path.exists(savepath): os.makedirs(savepath) bndbox = objects.getElementsByTagName('bndbox') cropboxes = [] for box in bndbox: x1_list = box.getElementsByTagName('xmin') x1 = int(x1_list[0].childNodes[0].data) y1_list = box.getElementsByTagName('ymin') y1 = int(y1_list[0].childNodes[0].data) x2_list = box.getElementsByTagName('xmax') x2 = int(x2_list[0].childNodes[0].data) y2_list = box.getElementsByTagName('ymax') y2 = int(y2_list[0].childNodes[0].data) w = x2 - x1 h = y2 - y1 obj = np.array([x1,y1,x2,y2]) shift = np.array([[1,1,1,1]]) XYmatrix = np.tile(obj,(1,1)) cropboxes = XYmatrix * shift img = Image.open(imgfile) for cropbox in cropboxes: cropedimg = img.crop(cropbox) cropedimg.save(savepath + '/' + image_pre + '_' + str(i) + '.jpg') i += 1
以上这篇Python 读取xml数据,cv2裁剪图片实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python 读取xml数据,cv2裁剪图片实例”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2024年12月28日
2024年12月28日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]