1、其中再语义分割比较常用的上采样:

其实现方法为:

def upconv2x2(in_channels, out_channels, mode='transpose'):
 if mode == 'transpose':
  # 这个上采用需要设置其输入通道,输出通道.其中kernel_size、stride
  # 大小要跟对应下采样设置的值一样大小。这样才可恢复到相同的wh。这里时反卷积操作。
  return nn.ConvTranspose2d(
   in_channels,
   out_channels,
   kernel_size=2,
   stride=2)
 else:
  # out_channels is always going to be the same
  # as in_channels
  # 这里不会改变通道数,其中scale_factor是上采用的放大因子,其是相对于当前的
  # 输入大小的倍数
  return nn.Sequential(
   nn.Upsample(mode='bilinear', scale_factor=2, align_corners=True))
  # 这里的代码是在这里设置多一个卷积,这样子就起到了可以修改其输出通道的功能了。
  # 相当于功能跟ConvTranspose2d()差不多,只是上采样的方法不同
  conv1x1((in_channels, out_channels))
 
 
def conv1x1(in_channels, out_channels, groups=1):
 return nn.Sequential(nn.Conv2d(
  in_channels,
  out_channels,
  kernel_size=1,
  groups=groups,
  stride=1),
 nn.BatchNorm2d(out_channels))

另一种上采样的方法是,参考代码:segnet_pytorch:

  # Stage 5
  x51 = F.relu(self.bn51(self.conv51(x4p)))
  x52 = F.relu(self.bn52(self.conv52(x51)))
  x53 = F.relu(self.bn53(self.conv53(x52)))
  #这个id5记录的是池化操作时最大值的index,其要设置参数return_indices为True
  x5p, id5 = F.max_pool2d(x53,kernel_size=2, stride=2,return_indices=True)
 
 
  # Stage 5d
  #这个是进行最大值上采样的函数,其是根据id5来把值放到什么位置,其它位置没有值的地方
  补0
  x5d = F.max_unpool2d(x5p, id5, kernel_size=2, stride=2)
  x53d = F.relu(self.bn53d(self.conv53d(x5d)))
  x52d = F.relu(self.bn52d(self.conv52d(x53d)))
  x51d = F.relu(self.bn51d(self.conv51d(x52d)))

测试例子:

#测试上采样
m=nn.MaxPool2d((3,3),stride=(1,1),return_indices=True)
upm=nn.MaxUnpool2d((3,3),stride=(1,1))
data4=torch.randn(1,1,3,3)
output5,indices=m(data4)
output6=upm(output5,indices)
 
print('\ndata4:',data4,
  '\nmaxPool2d',output5,
  '\nindices:',indices,
  '\noutput6:',output6)

其输出为:

data4: tensor([[[[ 2.3151, -1.0391, 0.1074],
   [ 1.9360, 0.2524, 2.3735],
   [-0.1151, 0.4684, -1.8800]]]]) 
maxPool2d tensor([[[[2.3735]]]]) 
indices: tensor([[[[5]]]]) 
output6: tensor([[[[0.0000, 0.0000, 0.0000],
   [0.0000, 0.0000, 2.3735],
   [0.0000, 0.0000, 0.0000]]]])

以上这篇pytorch进行上采样的种类实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,上采样,种类

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“pytorch进行上采样的种类实例”

暂无“pytorch进行上采样的种类实例”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?