第一种是进行多项式拟合,数学上可以证明,任意函数都可以表示为多项式形式。具体示例如下。
###拟合年龄
import numpy as np import matplotlib.pyplot as plt #定义x、y散点坐标 x = [10,20,30,40,50,60,70,80] x = np.array(x) print('x is :\n',x) num = [174,236,305,334,349,351,342,323] y = np.array(num) print('y is :\n',y) #用3次多项式拟合 f1 = np.polyfit(x, y, 3) print('f1 is :\n',f1) p1 = np.poly1d(f1) print('p1 is :\n',p1) #也可使用yvals=np.polyval(f1, x) yvals = p1(x) #拟合y值 print('yvals is :\n',yvals) #绘图 plot1 = plt.plot(x, y, 's',label='original values') plot2 = plt.plot(x, yvals, 'r',label='polyfit values') plt.xlabel('x') plt.ylabel('y') plt.legend(loc=4) #指定legend的位置右下角 plt.title('polyfitting') plt.show()
2 。 第一种方案是给出具体的函数形式(可以是任意的,只要你能写的出来 下面的func就是),用最小二乘的方式去逼近和拟合,求出函数的各项系数,如下。
##使用curve_fit import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #自定义函数 e指数形式 def func(x, a, b,c): return a*np.sqrt(x)*(b*np.square(x)+c) #定义x、y散点坐标 x = [20,30,40,50,60,70] x = np.array(x) num = [453,482,503,508,498,479] y = np.array(num) #非线性最小二乘法拟合 popt, pcov = curve_fit(func, x, y) #获取popt里面是拟合系数 print(popt) a = popt[0] b = popt[1] c = popt[2] yvals = func(x,a,b,c) #拟合y值 print('popt:', popt) print('系数a:', a) print('系数b:', b) print('系数c:', c) print('系数pcov:', pcov) print('系数yvals:', yvals) #绘图 plot1 = plt.plot(x, y, 's',label='original values') plot2 = plt.plot(x, yvals, 'r',label='polyfit values') plt.xlabel('x') plt.ylabel('y') plt.legend(loc=4) #指定legend的位置右下角 plt.title('curve_fit') plt.show()
拟合高斯分布的方法。
#encoding=utf-8 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit import pandas as pd #自定义函数 e指数形式 def func(x, a,u, sig): return a*(np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig))*(431+(4750/x)) #定义x、y散点坐标 x = [40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135] x=np.array(x) # x = np.array(range(20)) print('x is :\n',x) num = [536,529,522,516,511,506,502,498,494,490,487,484,481,478,475,472,470,467,465,463] y = np.array(num) print('y is :\n',y) popt, pcov = curve_fit(func, x, y,p0=[3.1,4.2,3.3]) #获取popt里面是拟合系数 a = popt[0] u = popt[1] sig = popt[2] yvals = func(x,a,u,sig) #拟合y值 print(u'系数a:', a) print(u'系数u:', u) print(u'系数sig:', sig) #绘图 plot1 = plt.plot(x, y, 's',label='original values') plot2 = plt.plot(x, yvals, 'r',label='polyfit values') plt.xlabel('x') plt.ylabel('y') plt.legend(loc=4) #指定legend的位置右下角 plt.title('curve_fit') plt.show()
总结
以上所述是小编给大家介绍的python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案,希望对大家有所帮助,也非常感谢大家对网站的支持!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案”评论...
更新日志
2024年11月08日
2024年11月08日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]