Python中对于数组和列表进行切片操作是很频繁的,当然对于切片的操作可供我们直接使用的函数也是很遍历了,我们今天主要简单总结一下常用集中索引化方式,希望对大家有所帮助吧。
对于列表的切片比较简单,在我之前的博客里面有详细的讲解,需要的话可以去看看,这里就不再详细说了,今天主要是讲解对于Python中Array对象的操作,我们平时使用比较频繁的一般也就是三维的矩阵了,再高维度的处理方式是相同的,这里我们只讲解三维和二维的使用。
对于X[:,0];
是取二维数组中第一维的所有数据
对于X[:,1]
是取二维数组中第二维的所有数据
对于X[:,m:n]
是取二维数组中第m维到第n-1维的所有数据
对于X[:,:,0]
是取三维矩阵中第一维的所有数据
对于X[:,:,1]
是取三维矩阵中第二维的所有数据
对于X[:,:,m:n]
是取三维矩阵中第m维到第n-1维的所有数据
这样的讲解可能还是有点抽象,下面我们用具体的实例来讲解,相信会更加容易理解,具体如下:
#!usr/bin/env python #encoding:utf-8 from __future__ import division ''' __Author__:沂水寒城 学习Python中的X[:,0]、X[:,1]、X[:,:,0]、X[:,:,1]、X[:,m:n]和X[:,:,m:n] ''' import numpy as np def simple_test(): ''' 简单的小实验 ''' data_list=[[1,2,3],[1,2,1],[3,4,5],[4,5,6],[5,6,7],[6,7,8],[6,7,9],[0,4,7],[4,6,0],[2,9,1],[5,8,7],[9,7,8],[3,7,9]] # data_list.toarray() data_list=np.array(data_list) print 'X[:,0]结果输出为:' print data_list[:,0] print 'X[:,1]结果输出为:' print data_list[:,1] print 'X[:,m:n]结果输出为:' print data_list[:,0:1] data_list=[[[1,2],[1,0],[3,4],[7,9],[4,0]],[[1,4],[1,5],[3,6],[8,9],[5,0]],[[8,2],[1,8],[3,5],[7,3],[4,6]], [[1,1],[1,2],[3,5],[7,6],[7,8]],[[9,2],[1,3],[3,5],[7,67],[4,4]],[[8,2],[1,9],[3,43],[7,3],[43,0]], [[1,22],[1,2],[3,42],[7,29],[4,20]],[[1,5],[1,20],[3,24],[17,9],[4,10]],[[11,2],[1,110],[3,14],[7,4],[4,2]]] data_list=np.array(data_list) print 'X[:,:,0]结果输出为:' print data_list[:,:,0] print 'X[:,:,1]结果输出为:' print data_list[:,:,1] print 'X[:,:,m:n]结果输出为:' print data_list[:,:,0:1] if __name__ == '__main__': simple_test()
结果如下:
X[:,0]结果输出为:
[1 1 3 4 5 6 6 0 4 2 5 9 3]
X[:,1]结果输出为:
[2 2 4 5 6 7 7 4 6 9 8 7 7]
X[:,m:n]结果输出为:
[[1]
[1]
[3]
[4]
[5]
[6]
[6]
[0]
[4]
[2]
[5]
[9]
[3]]
X[:,:,0]结果输出为:
[[ 1 1 3 7 4]
[ 1 1 3 8 5]
[ 8 1 3 7 4]
[ 1 1 3 7 7]
[ 9 1 3 7 4]
[ 8 1 3 7 43]
[ 1 1 3 7 4]
[ 1 1 3 17 4]
[11 1 3 7 4]]
X[:,:,1]结果输出为:
[[ 2 0 4 9 0]
[ 4 5 6 9 0]
[ 2 8 5 3 6]
[ 1 2 5 6 8]
[ 2 3 5 67 4]
[ 2 9 43 3 0]
[ 22 2 42 29 20]
[ 5 20 24 9 10]
[ 2 110 14 4 2]]
X[:,:,m:n]结果输出为:
[[[ 1]
[ 1]
[ 3]
[ 7]
[ 4]]
[[ 1]
[ 1]
[ 3]
[ 8]
[ 5]]
[[ 8]
[ 1]
[ 3]
[ 7]
[ 4]]
[[ 1]
[ 1]
[ 3]
[ 7]
[ 7]]
[[ 9]
[ 1]
[ 3]
[ 7]
[ 4]]
[[ 8]
[ 1]
[ 3]
[ 7]
[43]]
[[ 1]
[ 1]
[ 3]
[ 7]
[ 4]]
[[ 1]
[ 1]
[ 3]
[17]
[ 4]]
[[11]
[ 1]
[ 3]
[ 7]
[ 4]]]
[Finished in 0.6s]
果然还是很方便,做个记录,欢迎交流!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]