以下面这个例子作为教程,实现功能是element-wise add;
(pytorch中想调用cuda模块,还是用另外使用C编写接口脚本)
第一步:cuda编程的源文件和头文件
// mathutil_cuda_kernel.cu // 头文件,最后一个是cuda特有的 #include <curand.h> #include <stdio.h> #include <math.h> #include <float.h> #include "mathutil_cuda_kernel.h" // 获取GPU线程通道信息 dim3 cuda_gridsize(int n) { int k = (n - 1) / BLOCK + 1; int x = k; int y = 1; if(x > 65535) { x = ceil(sqrt(k)); y = (n - 1) / (x * BLOCK) + 1; } dim3 d(x, y, 1); return d; } // 这个函数是cuda执行函数,可以看到细化到了每一个元素 __global__ void broadcast_sum_kernel(float *a, float *b, int x, int y, int size) { int i = (blockIdx.x + blockIdx.y * gridDim.x) * blockDim.x + threadIdx.x; if(i >= size) return; int j = i % x; i = i / x; int k = i % y; a[IDX2D(j, k, y)] += b[k]; } // 这个函数是与c语言函数链接的接口函数 void broadcast_sum_cuda(float *a, float *b, int x, int y, cudaStream_t stream) { int size = x * y; cudaError_t err; // 上面定义的函数 broadcast_sum_kernel<<<cuda_gridsize(size), BLOCK, 0, stream>(a, b, x, y, size); err = cudaGetLastError(); if (cudaSuccess != err) { fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err)); exit(-1); } }
#ifndef _MATHUTIL_CUDA_KERNEL #define _MATHUTIL_CUDA_KERNEL #define IDX2D(i, j, dj) (dj * i + j) #define IDX3D(i, j, k, dj, dk) (IDX2D(IDX2D(i, j, dj), k, dk)) #define BLOCK 512 #define MAX_STREAMS 512 #ifdef __cplusplus extern "C" { #endif void broadcast_sum_cuda(float *a, float *b, int x, int y, cudaStream_t stream); #ifdef __cplusplus } #endif #endif
第二步:C编程的源文件和头文件(接口函数)
// mathutil_cuda.c // THC是pytorch底层GPU库 #include <THC/THC.h> #include "mathutil_cuda_kernel.h" extern THCState *state; int broadcast_sum(THCudaTensor *a_tensor, THCudaTensor *b_tensor, int x, int y) { float *a = THCudaTensor_data(state, a_tensor); float *b = THCudaTensor_data(state, b_tensor); cudaStream_t stream = THCState_getCurrentStream(state); // 这里调用之前在cuda中编写的接口函数 broadcast_sum_cuda(a, b, x, y, stream); return 1; }
int broadcast_sum(THCudaTensor *a_tensor, THCudaTensor *b_tensor, int x, int y);
第三步:编译,先编译cuda模块,再编译接口函数模块(不能放在一起同时编译)
nvcc -c -o mathutil_cuda_kernel.cu.o mathutil_cuda_kernel.cu -x cu -Xcompiler -fPIC -arch=sm_52
import os import torch from torch.utils.ffi import create_extension this_file = os.path.dirname(__file__) sources = [] headers = [] defines = [] with_cuda = False if torch.cuda.is_available(): print('Including CUDA code.') sources += ['src/mathutil_cuda.c'] headers += ['src/mathutil_cuda.h'] defines += [('WITH_CUDA', None)] with_cuda = True this_file = os.path.dirname(os.path.realpath(__file__)) extra_objects = ['src/mathutil_cuda_kernel.cu.o'] # 这里是编译好后的.o文件位置 extra_objects = [os.path.join(this_file, fname) for fname in extra_objects] ffi = create_extension( '_ext.cuda_util', headers=headers, sources=sources, define_macros=defines, relative_to=__file__, with_cuda=with_cuda, extra_objects=extra_objects ) if __name__ == '__main__': ffi.build()
第四步:调用cuda模块
from _ext import cuda_util #从对应路径中调用编译好的模块 a = torch.randn(3, 5).cuda() b = torch.randn(3, 1).cuda() mathutil.broadcast_sum(a, b, *map(int, a.size())) # 上面等价于下面的效果: a = torch.randn(3, 5) b = torch.randn(3, 1) a += b
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“pytorch中使用cuda扩展的实现示例”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年12月31日
2024年12月31日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]