废话不多说,大家直接看代码吧!

"""遗传算法实现求函数极大值—Zjh"""
import numpy as np
import random
import matplotlib.pyplot as plt
class Ga():
 """求出二进制编码的长度"""
 def __init__(self):
  self.boundsbegin = -2
  self.boundsend = 3
  precision = 0.0001 # 运算精确度
  self.Bitlength = int(np.log2((self.boundsend - self.boundsbegin)/precision))+1#%染色体长度
  self.popsize = 50# 初始种群大小
  self.Generationmax = 12# 最大进化代数
  self.pcrossover = 0.90# 交叉概率
  self.pmutation = 0.2# 变异概率
  self.population=np.random.randint(0,2,size=(self.popsize,self.Bitlength))
 
 """计算出适应度"""
 def fitness(self,population):
  Fitvalue=[]
  cumsump = []
  for i in population:
   x=self.transform2to10(i)#二进制对应的十进制
   xx=self.boundsbegin + x * (self.boundsend - self.boundsbegin) / (pow(2,self.Bitlength)-1)
   s=self.targetfun(xx)
   Fitvalue.append(s)
  fsum=sum(Fitvalue)
  everypopulation=[x/fsum for x in Fitvalue]
  cumsump.append(everypopulation[0])
  everypopulation.remove(everypopulation[0])
  for j in everypopulation:
   p=cumsump[-1]+j
   cumsump.append(p)
  return Fitvalue,cumsump
 """选择两个基因,准备交叉"""
 def select(self,cumsump):
  seln=[]
  for i in range(2):
   j = 1
   r=np.random.uniform(0,1)
   prand =[x-r for x in cumsump]
   while prand[j] < 0:
    j = j + 1
   seln.append(j)
  return seln
 """交叉"""
 def crossover(self, seln, pc):
  d=self.population[seln[1]].copy()
  f=self.population[seln[0]].copy()
  r=np.random.uniform()
  if r<pc:
   print('yes')
   c=np.random.randint(1,self.Bitlength-1)
   print(c)
   a=self.population[seln[1]][c:]
   b=self.population[seln[0]][c:]
   d[c:]=b
   f[c:]=a
   print(d)
   print(f)
   g=d
   h=f
  else:
   g=self.population[seln[1]]
   h=self.population[seln[0]]
  return g,h
 """变异操作"""
 def mutation(self,scnew,pmutation):
  r=np.random.uniform(0, 1)
  if r < pmutation:
   v=np.random.randint(0,self.Bitlength)
   scnew[v]=abs(scnew[v]-1)
  else:
   scnew=scnew
  return scnew
 
 """二进制转换为十进制"""
 def transform2to10(self,population):
  #x=population[-1] #最后一位的值
  x=0
  #n=len(population)
  n=self.Bitlength
  p=population.copy()
  p=p.tolist()
  p.reverse()
  for j in range(n):
   x=x+p[j]*pow(2,j)
  return x #返回十进制的数
 """目标函数"""
 def targetfun(self,x):
  #y = x∗(np.sin(10∗(np.pi)∗x))+ 2
  y=x*(np.sin(10*np.pi*x))+2
  return y
 
if __name__ == '__main__':
 Generationmax=12
 gg=Ga()
 scnew=[]
 ymax=[]
 #print(gg.population)
 Fitvalue, cumsump=gg.fitness(gg.population)
 Generation = 1
 while Generation < Generationmax +1:
  Fitvalue, cumsump = gg.fitness(gg.population)
  for j in range(0,gg.popsize,2):
   seln = gg.select( cumsump) #返回选中的2个个体的序号
   scro = gg.crossover(seln, gg.pcrossover) #返回两条染色体
   s1=gg.mutation(scro[0],gg.pmutation)
   s2=gg.mutation(scro[1],gg.pmutation)
   scnew.append(s1)
   scnew.append(s2)
  gg.population = scnew
  Fitvalue, cumsump = gg.fitness(gg.population)
  fmax=max(Fitvalue)
  d=Fitvalue.index(fmax)
  ymax.append(fmax)
  x = gg.transform2to10(gg.population[d])
  xx = gg.boundsbegin + x * (gg.boundsend - gg.boundsbegin) / (pow(2, gg.Bitlength) - 1)
  Generation = Generation + 1
 Bestpopulation = xx
 Targetmax = gg.targetfun(xx)
 print(xx)
 print(Targetmax)
 
x=np.linspace(-2,3,30)
y=x*(np.sin(10*np.pi*x))+2
plt.scatter(2.65,4.65,c='red')
plt.xlim(0,5)
plt.ylim(0,6)
plt.plot(x,y)
plt.annotate('local max', xy=(2.7,4.8), xytext=(3.6, 5.2),arrowprops=dict(facecolor='black', shrink=0.05))
plt.show()

一个函数求极值的仿真的作业,参考了别人的matlab代码,用python复现了一遍,加深印象!

以上这篇python 遗传算法求函数极值的实现代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,遗传算法,函数,极值

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“python 遗传算法求函数极值的实现代码”

暂无“python 遗传算法求函数极值的实现代码”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?