先给出一个样例看看
import tensorflow as tf raw = tf.constant([1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1]) ''' 拆成 [1,2] [3,4] [5,6] [6,5] [4,3] [2,1] ''' result_1 = tf.dynamic_partition(tf.reshape(raw, [6,2]),[0, 1, 2, 3, 4, 5], 6) ''' 拆成 [1, 2, 3, 4, 5, 6] [6, 5, 4, 3, 2, 1] ''' result_2 = tf.dynamic_partition(tf.reshape(raw, [2, 6]), [0, 1], 2) ''' 拆成 [1] [2] [3] [4] [5] [6] [6] [5] [4] [3] [2] [1] ''' result_3 = tf.dynamic_partition(tf.reshape(raw, [12, 1]), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], 12) with tf.Session() as sess: print(sess.run(result_1)) print(sess.run(result_2)) print(sess.run(result_3))
结果
[array([[1, 2]]), array([[3, 4]]), array([[5, 6]]), array([[6, 5]]), array([[4, 3]]), array([[2, 1]])] [array([[1, 2, 3, 4, 5, 6]]), array([[6, 5, 4, 3, 2, 1]])] [array([[1]]), array([[2]]), array([[3]]), array([[4]]), array([[5]]), array([[6]]), array([[6]]), array([[5]]), array([[4]]), array([[3]]), array([[2]]), array([[1]])]
再给出一个样例
Py3代码:
# one-hot 函数的样例 import tensorflow as tf label = tf.placeholder(tf.int32,[None]) # 直接把 输入的序列进行One-Hot的结果 one_hot = tf.one_hot(label, 3, 1, 0) # 进行转置 one_hot_new = tf.transpose(one_hot, perm=[1,0]) one_hot_new = tf.cast(one_hot_new, tf.float32) # one_hot_new[2] = one_hot_new[2] * 1.5 # 按照每一维的大小进行拆分 one_hot_new_1 = tf.dynamic_partition(one_hot_new, [0, 1, 1], 2)[0] one_hot_new_2 = tf.dynamic_partition(one_hot_new, [1, 0, 1], 2)[0] one_hot_new_3 = tf.dynamic_partition(one_hot_new, [1, 1, 0], 2)[0] # 按照每一维大小进行拆分 one_hot_1 = tf.dynamic_partition(one_hot_new, [0, 1, 2], 3)[0] one_hot_2 = tf.dynamic_partition(one_hot_new, [0, 1, 2], 3)[1] one_hot_3 = tf.dynamic_partition(one_hot_new, [0, 1, 2], 3)[2] # one_hot_new_3 = tf.dynamic_partition(one_hot_new, [0, 0, 1], 2)[2] # 拼接以上两维得到原来的结果 one_hot_new = tf.concat([one_hot_new_1, one_hot_new_2], axis=0) if __name__ == '__main__': with tf.Session() as sess: sess.run(tf.global_variables_initializer()) one_hot_out, one_hot_new_out, one_hot_new_1_out, one_hot_new_2_out, one_hot_new_3_out, one_hot_1_out, one_hot_2_out, one_hot_3_out = sess.run([one_hot, one_hot_new, one_hot_new_1, one_hot_new_2, one_hot_new_3, one_hot_1, one_hot_2, one_hot_3], feed_dict={label: [0, 1, 1, 2, 2, 0, 0, 1, 2, 2, 0, 2]}) print("原始的One-hot结果:") print(one_hot_out, end='\n\n') print("以上的结果.T:") print("方法一拆分:") print(one_hot_new_out, end='\n\n') print("拆分(1)维:") print(one_hot_new_1_out, end='\n\n') print("拆分 (2)维:") print(one_hot_new_2_out, end='\n\n') print("拆分 (3)维:") print(one_hot_new_3_out, end='\n\n') print("方法二拆分:") print("拆分(1)维:") print(one_hot_1_out, end='\n\n') print("拆分 (2)维:") print(one_hot_2_out, end='\n\n') print("拆分 (3)维:") print(one_hot_3_out, end='\n\n')
控制台输出:
原始的One-hot结果: [[1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1] [1 0 0] [1 0 0] [0 1 0] [0 0 1] [0 0 1] [1 0 0] [0 0 1]] 以上的结果.T: 方法一拆分: [[ 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0.] [ 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0.]] 拆分(1)维: [[ 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0.]] 拆分 (2)维: [[ 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0.]] 拆分 (3)维: [[ 0. 0. 0. 1. 1. 0. 0. 0. 1. 1. 0. 1.]] 方法二拆分: 拆分(1)维: [[ 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0.]] 拆分 (2)维: [[ 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0.]] 拆分 (3)维: [[ 0. 0. 0. 1. 1. 0. 0. 0. 1. 1. 0. 1.]]
以上这篇Tensorflow tf.dynamic_partition矩阵拆分示例(Python3) 就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Tensorflow tf.dynamic_partition矩阵拆分示例(Python3)”评论...
更新日志
2025年01月03日
2025年01月03日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]