下面是调用模型进行批量测试的代码(出现溢出),开始以为导致溢出的原因是数据读入方式问题引起的,用了tf , PIL和cv等方式读入图片数据,发现越来越慢,内存占用飙升,调试时发现是sess.run这里出了问题(随着for循环进行速度越来越慢)。
# Creates graph from saved GraphDef create_graph(pb_path) # Init tf Session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) init = tf.global_variables_initializer() sess.run(init) input_image_tensor = sess.graph.get_tensor_by_name("create_inputs/batch:0") output_tensor_name = sess.graph.get_tensor_by_name("conv6/out_1:0") for filename in os.listdir(image_dir): image_path = os.path.join(image_dir, filename) start = time.time() image_data = cv2.imread(image_path) image_data = cv2.resize(image_data, (w, h)) image_data_1 = image_data - IMG_MEAN input_image = np.expand_dims(image_data_1, 0) raw_output_up = tf.image.resize_bilinear(output_tensor_name, size=[h, w], align_corners=True) raw_output_up = tf.argmax(raw_output_up, axis=3) predict_img = sess.run(raw_output_up, feed_dict={input_image_tensor: input_image}) # 1,height,width predict_img = np.squeeze(predict_img) # height, width voc_palette = visual.make_palette(3) masked_im = visual.vis_seg(image_data, predict_img, voc_palette) cv2.imwrite("%s_pred.png" % (save_dir + filename.split(".")[0]), masked_im) print(time.time() - start) print("Done")
下面是解决溢出问题的代码(将部分代码放在for循环外)
# Creates graph from saved GraphDef create_graph(pb_path) # Init tf Session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) init = tf.global_variables_initializer() sess.run(init) input_image_tensor = sess.graph.get_tensor_by_name("create_inputs/batch:0") output_tensor_name = sess.graph.get_tensor_by_name("conv6/out_1:0") ############################################################################################################## raw_output_up = tf.image.resize_bilinear(output_tensor_name, size=[h, w], align_corners=True) raw_output_up = tf.argmax(raw_output_up, axis=3) ############################################################################################################## for filename in os.listdir(image_dir): image_path = os.path.join(image_dir, filename) start = time.time() image_data = cv2.imread(image_path) image_data = cv2.resize(image_data, (w, h)) image_data_1 = image_data - IMG_MEAN input_image = np.expand_dims(image_data_1, 0) predict_img = sess.run(raw_output_up, feed_dict={input_image_tensor: input_image}) # 1,height,width predict_img = np.squeeze(predict_img) # height, width voc_palette = visual.make_palette(3) masked_im = visual.vis_seg(image_data, predict_img, voc_palette) cv2.imwrite("%s_pred.png" % (save_dir + filename.split(".")[0]), masked_im) print(time.time() - start) print("Done")
总结:
在迭代过程中, 在sess.run的for循环中不要加入tensorflow一些op操作,会增加图节点,否则随着迭代的进行,tf的图会越来越大,最终导致溢出;
建议不要使用tf.gfile.FastGFile(image_path, 'rb').read()读入数据(有可能会造成溢出),用opencv之类读取。
以上这篇解决Tensoflow sess.run导致的内存溢出问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“解决Tensorflow sess.run导致的内存溢出问题”评论...
更新日志
2024年11月08日
2024年11月08日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]