我就废话不多说了,直接上代码吧!
import matplotlib matplotlib.use('Agg') import os from keras.models import load_model import numpy as np from PIL import Image import cv2 #加载模型h5文件 model = load_model("C:\\python\\python3_projects\\cat_dog\\cats_dogs_fifty_thousand.h5") model.summary() #规范化图片大小和像素值 def get_inputs(src=[]): pre_x = [] for s in src: input = cv2.imread(s) input = cv2.resize(input, (150, 150)) input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) pre_x.append(input) # input一张图片 pre_x = np.array(pre_x) / 255.0 return pre_x #要预测的图片保存在这里 predict_dir = 'C:\python\python3_projects\cat_dog\pics' #这个路径下有两个文件,分别是cat和dog test = os.listdir(predict_dir) #打印后:['cat', 'dog'] print(test) #新建一个列表保存预测图片的地址 images = [] #获取每张图片的地址,并保存在列表images中 for testpath in test: for fn in os.listdir(os.path.join(predict_dir, testpath)): if fn.endswith('jpg'): fd = os.path.join(predict_dir, testpath, fn) print(fd) images.append(fd) #调用函数,规范化图片 pre_x = get_inputs(images) #预测 pre_y = model.predict(pre_x) print(pre_y)
以上这篇利用keras加载训练好的.H5文件,并实现预测图片就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
keras,H5文件,预测图片
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“利用keras加载训练好的.H5文件,并实现预测图片”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]