pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:
if 'coco' in args.dataset: mean_vals = [0.471, 0.448, 0.408] std_vals = [0.234, 0.239, 0.242] elif 'imagenet' in args.dataset: mean_vals = [0.485, 0.456, 0.406] std_vals = [0.229, 0.224, 0.225]
计算自己数据集图像像素的均值方差:
import numpy as np import cv2 import random # calculate means and std train_txt_path = './train_val_list.txt' CNum = 10000 # 挑选多少图片进行计算 img_h, img_w = 32, 32 imgs = np.zeros([img_w, img_h, 3, 1]) means, stdevs = [], [] with open(train_txt_path, 'r') as f: lines = f.readlines() random.shuffle(lines) # shuffle , 随机挑选图片 for i in tqdm_notebook(range(CNum)): img_path = os.path.join('./train', lines[i].rstrip().split()[0]) img = cv2.imread(img_path) img = cv2.resize(img, (img_h, img_w)) img = img[:, :, :, np.newaxis] imgs = np.concatenate((imgs, img), axis=3) # print(i) imgs = imgs.astype(np.float32)/255. for i in tqdm_notebook(range(3)): pixels = imgs[:,:,i,:].ravel() # 拉成一行 means.append(np.mean(pixels)) stdevs.append(np.std(pixels)) # cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转 means.reverse() # BGR --> RGB stdevs.reverse() print("normMean = {}".format(means)) print("normStd = {}".format(stdevs)) print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs))
以上这篇计算pytorch标准化(Normalize)所需要数据集的均值和方差实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“计算pytorch标准化(Normalize)所需要数据集的均值和方差实例”评论...
更新日志
2024年11月08日
2024年11月08日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]