在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。
我们带着2个问题来进行下列实验
- np.random.seed()是否一直有效
- np.random.seed(Argument)的参数作用"htmlcode">
import numpy as np if __name__ == '__main__': i = 0 while (i < 6): if (i < 3): np.random.seed(0) print(np.random.randn(1, 5)) else: print(np.random.randn(1, 5)) pass i += 1 print("-------------------") i = 0 while (i < 2): print(np.random.randn(1, 5)) i += 1 print(np.random.randn(2, 5)) print("---------重置----------") np.random.seed(0) i = 0 while (i < 8): print(np.random.randn(1, 5)) i += 1
可以看出,np.random.seed()对后面的随机数一直有效。
两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实和加了随机数种子不一样。但是,后面的加了随机数种子的,八次循环中的结果和前面的结果是一样的。说明,随机数种子对后面的结果一直有影响。同时,加了随机数种子以后,后面的随机数组都是按一定的顺序生成的。
例子2,随机数种子参数的作用
import numpy as np if __name__ == '__main__': i = 0 np.random.seed(0) while (i < 3): print(np.random.randn(1, 5)) i += 1 i = 0 print("---------------------") np.random.seed(1) i = 0 while (i < 3): print(np.random.randn(1, 5)) i += 1
当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。并且在该参数确定后,其后面的随机数的生成顺序也就确定了。
所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“np.random.seed() 的使用详解”评论...
更新日志
2025年01月03日
2025年01月03日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]