保存模型
保存模型仅仅是为了测试的时候,只需要
torch.save(model.state_dict, path)
path 为保存的路径
但是有时候模型及数据太多,难以一次性训练完的时候,而且用的还是 Adam优化器的时候, 一定要保存好训练的优化器参数以及epoch
state = { 'model': model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch': epoch } torch.save(state, path)
因为这里
def adjust_learning_rate(optimizer, epoch): lr_t = lr lr_t = lr_t * (0.3 ** (epoch // 2)) for param_group in optimizer.param_groups: param_group['lr'] = lr_t
学习率是根据epoch变化的, 如果不保存epoch的话,基本上每次都从epoch为0开始训练,这样学习率就相当于不变了!!
恢复模型
恢复模型只用于测试的时候,
model.load_state_dict(torch.load(path))
path为之前存储模型时的路径
但是如果是用于继续训练的话,
checkpoint = torch.load(path) model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) start_epoch = checkpoint['epoch']+1
依次恢复出模型 优化器参数以及epoch
以上这篇Pytorch保存模型用于测试和用于继续训练的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
Pytorch,保存,模型
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Pytorch保存模型用于测试和用于继续训练的区别详解”评论...
更新日志
2024年11月08日
2024年11月08日
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]