我就废话不多说了,直接上代码吧!
import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import matplotlib.pyplot as plt torch.manual_seed(1) np.random.seed(1) BATCH_SIZE = 64 LR_G = 0.0001 LR_D = 0.0001 N_IDEAS = 5 ART_COMPONENTS = 15 PAINT_POINTS = np.vstack([np.linspace(-1,1,ART_COMPONENTS) for _ in range(BATCH_SIZE)]) def artist_works(): a = np.random.uniform(1,2,size=BATCH_SIZE)[:,np.newaxis] paintings = a*np.power(PAINT_POINTS,2) + (a-1) paintings = torch.from_numpy(paintings).float() return Variable(paintings) G = nn.Sequential( nn.Linear(N_IDEAS,128), nn.ReLU(), nn.Linear(128,ART_COMPONENTS), ) D = nn.Sequential( nn.Linear(ART_COMPONENTS,128), nn.ReLU(), nn.Linear(128,1), nn.Sigmoid(), ) opt_D = torch.optim.Adam(D.parameters(),lr=LR_D) opt_G = torch.optim.Adam(G.parameters(),lr=LR_G) plt.ion() for step in range(10000): artist_paintings = artist_works() G_ideas = Variable(torch.randn(BATCH_SIZE,N_IDEAS)) G_paintings = G(G_ideas) prob_artist0 = D(artist_paintings) prob_artist1 = D(G_paintings) D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1-prob_artist1)) G_loss = torch.mean(torch.log(1 - prob_artist1)) opt_D.zero_grad() D_loss.backward(retain_variables=True) opt_D.step() opt_G.zero_grad() G_loss.backward() opt_G.step() if step % 50 == 0: plt.cla() plt.plot(PAINT_POINTS[0],G_paintings.data.numpy()[0],c='#4ad631',lw=3,label='Generated painting',) plt.plot(PAINT_POINTS[0],2 * np.power(PAINT_POINTS[0], 2) + 1,c='#74BCFF',lw=3,label='upper bound',) plt.plot(PAINT_POINTS[0],1 * np.power(PAINT_POINTS[0], 2) + 0,c='#FF9359',lw=3,label='lower bound',) plt.text(-.5,2.3,'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(), fontdict={'size':15}) plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 15}) plt.ylim((0,3)) plt.legend(loc='upper right', fontsize=12) plt.draw() plt.pause(0.01) plt.ioff() plt.show()
以上这篇pytorch GAN生成对抗网络实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“pytorch GAN生成对抗网络实例”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年01月05日
2025年01月05日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]