如下所示:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

这两行代码放在读取数据之前。

mytensor = my_tensor.to(device)

这行代码的意思是将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。

这句话需要写的次数等于需要保存GPU上的tensor变量的个数;一般情况下这些tensor变量都是最开始读数据时的tensor变量,后面衍生的变量自然也都在GPU上

如果是多个GPU

在代码中的使用方法为:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = Model()

if torch.cuda.device_count() > 1:

 model = nn.DataParallel(model,device_ids=[0,1,2])

 

model.to(device)

Tensor总结

(1)Tensor 和 Numpy都是矩阵,区别是前者可以在GPU上运行,后者只能在CPU上;

(2)Tensor和Numpy互相转化很方便,类型也比较兼容

(3)Tensor可以直接通过print显示数据类型,而Numpy不可以

把Tensor放到GPU上运行

if torch.cuda.is_available():
 h = g.cuda()
 print(h)
torch.nn.functional
Convolution函数
torch.nn.functional.vonv1d(input,weight,bias=None,stride=1,padding=0,dilation=1,groups=1)
 
 
 
torch.nn.functional.conv2d(input,weight,bias=None,stride=1,padding=0,dilation=1,group=1)
 
parameter:
 input --输入张量(minibatch * in_channels * iH * iW)-weights-– 过滤器张量 (out_channels, in_channels/groups, kH, kW) - bias – 可选偏置张量 (out_channels) - stride – 卷积核的步长,可以是单个数字或一个元组 (sh x sw)。默认为1 - padding – 输入上隐含零填充。可以是单个数字或元组。 默认值:0 - groups – 将输入分成组,in_channels应该被组数除尽
 
 
> # With square kernels and equal stride
> filters = autograd.Variable(torch.randn(8,4,3,3))
> inputs = autograd.Variable(torch.randn(1,4,5,5))
> F.conv2d(inputs, filters, padding=1)

Pytorch中使用指定的GPU

(1)直接终端中设定

CUDA_VISIBLE_DEVICES=1

(2)python代码中设定:

import os

os.environ['CUDA_VISIBLE_DEVICE']='1'

(3)使用函数set_device

import torch

torch.cuda.set_device(id)

Pytoch中的in-place

in-place operation 在 pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是在运来的内存上改变它的值。可以把它称为原地操作符。

在pytorch中经常加后缀 “_” 来代表原地in-place operation, 比如 .add_() 或者.scatter()

python 中里面的 += *= 也是in-place operation。

下面是正常的加操作,执行结束加操作之后x的值没有发生变化:

import torch
x=torch.rand(2) #tensor([0.8284, 0.5539])
print(x)
y=torch.rand(2)
print(x+y)  #tensor([1.0250, 0.7891])
print(x)  #tensor([0.8284, 0.5539])

下面是原地操作,执行之后改变了原来变量的值:

import torch
x=torch.rand(2) #tensor([0.8284, 0.5539])
print(x)
y=torch.rand(2)
x.add_(y)
print(x)  #tensor([1.1610, 1.3789])

以上这篇Pytorch to(device)用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Pytorch,device

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“Pytorch to(device)用法”

暂无“Pytorch to(device)用法”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。