这篇文章主要介绍了Python内置数据类型list各方法的性能测试过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
测试环境
本文所涉及的代码均在MacOS系统与CentOS7下测试,使用的Python版本为3.6.8。
测试模块
测试用的模块是Python内置的timeit模块:
timeit模块可以用来测试一小段Python代码的执行速度。
Timer类
class timeit.Timer(stmt='pass', setup='pass', timer=<timer function>)
Timer是测量小段代码执行速度的类。
stmt参数是要测试的代码语句(statment);
setup参数是运行代码时需要的设置;
timer参数是一个定时器函数,与平台有关。
Timer类的timeit方法
timeit.Timer.timeit(number=1000000)
Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的平均耗时,一个float类型的秒数。
列表内置方法的性能测试
我们知道,生成一个列表可以使用列表生成式或者append、insert、extend这些方法,现在我们来看一下这些方法的执行效率:
from timeit import Timer def test_list(): lst = list(range(1000)) def test_generation(): lst = [i for i in range(1000)] def test_append(): lst = [] for i in range(1000): lst.append(i) def test_add(): lst = [] for i in range(1000): lst += [i] # 在列表的头部insert def test_insert_zero(): lst = [] for i in range(1000): lst.insert(0,i) # 在列表的尾部insert def test_insert_end(): lst = [] for i in range(1000): lst.insert(-1,i) def test_extend(): lst = [] lst.extend(list(range(1000))) t1 = Timer("test_list()","from __main__ import test_list") print(f"test_list takes {t1.timeit(number=1000)} seconds") t2 = Timer("test_generation()","from __main__ import test_generation") print(f"test_generation takes {t2.timeit(number=1000)} seconds") t3 = Timer("test_append()","from __main__ import test_append") print(f"test_append takes {t3.timeit(number=1000)} seconds") t4 = Timer("test_add()","from __main__ import test_add") print(f"test_add takes {t4.timeit(number=1000)} seconds") t5 = Timer("test_insert_zero()","from __main__ import test_insert_zero") print(f"test_insert_zero takes {t5.timeit(number=1000)} seconds") t6 = Timer("test_insert_end()","from __main__ import test_insert_end") print(f"test_insert_end takes {t6.timeit(number=1000)} seconds") t7 = Timer("test_extend()","from __main__ import test_extend") print(f"test_extend takes {t7.timeit(number=1000)} seconds")
我们先看看在MacOS系统下,执行上面这段代码的结果:
""" test_list takes 0.012904746999993222 seconds test_generation takes 0.03530399600003875 seconds test_append takes 0.0865129750000051 seconds test_add takes 0.08066114099983679 seconds test_insert_zero takes 0.30594958500023495 seconds test_insert_end takes 0.1522782449992519 seconds test_extend takes 0.017534753999825625 seconds """
我们可以看到:直接使用list方法强转的效率最高,其次是使用列表生成式,而append与直接加的方式紧随其后并且二者的效率相当;insert方法的执行效率最低——并且从头插入的效率要低于从尾部插入的效率!最后我们将强转的列表使用extend方法放入到新的列表中的过程效率并没有减少多少。
然后试试在Linux系统下的执行结果:
列表pop方法的性能测试
pop可以从第0各位置删除元素,也可以从最后位置删除元素(默认删除最后面的元素),现在我们来测试一下两种从不同位置删除元素的性能对比:
from timeit import Timer def test_pop_zero(): lst = list(range(2000)) for i in range(2000): lst.pop(0) def test_pop_end(): lst = list(range(2000)) for i in range(2000): lst.pop() t1 = Timer("test_pop_zero()","from __main__ import test_pop_zero") print(f"test_pop_zero takes {t1.timeit(number=1000)} seconds") t2 = Timer("test_pop_end()","from __main__ import test_pop_end") print(f"test_pop_end takes {t2.timeit(number=1000)} seconds")
在MacOS下程序的执行结果为:
test_pop_zero takes 0.5015365449999081 seconds test_pop_end takes 0.22170215499954793 seconds
然后我们来试试Linux系统中的执行结果:
可以看到:从列表的尾部删除元素的效率要比从头部删除的效率高很多!
关于列表insert方法的一个小坑
如果想使用insert方法生成一个列表[0,1,2,3,4,5]的话(当然使用insert方法效率会低很多,建议使用其他的方法)会有一个这样的问题,在此记录一下:
def test_insert(): lst = [] for i in range(6): lst.insert(-1,i) print(lst) test_insert()
结果竟然是这样的——第一个元素竟然一直在最后!
[0] [1, 0] [1, 2, 0] [1, 2, 3, 0] [1, 2, 3, 4, 0] [1, 2, 3, 4, 5, 0]
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]