我就废话不多说了,直接上代码吧!

import tensorflow as tf

def model_1():
  with tf.variable_scope("var_a"):
    a = tf.Variable(initial_value=[1, 2, 3], name="a")

  vars = [var for var in tf.trainable_variables() if var.name.startswith("var_a")]
  print(len(vars))
  return vars

def model_2():

  vars1 = model_1()

  with tf.variable_scope("var_b"):
    a = tf.Variable(initial_value=[1, 2, 3], name="a")

  vars2 = [var for var in tf.trainable_variables() if var.name.startswith("var")]
  print(len(vars2))
  return vars1


def pretrain_model1():
  print("-------- model 1 ------")
  vars = model_1()

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.save(sess, "./model.ckpt")

def train_model2():
  print("-------- model 2 ------")

  model1_vars = model_2()

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver(var_list=model1_vars)
    saver.restore(sess, "./model.ckpt")
    vars = sess.run([model1_vars])
    for var in vars:
      print(var)

step = 2
if step == 1:
  pretrain_model1()
else:
  train_model2()

以上这篇tensorflow 只恢复部分模型参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
tensorflow,模型,参数

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“tensorflow 只恢复部分模型参数的实例”

暂无“tensorflow 只恢复部分模型参数的实例”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。