在神经网络计算过程中,经常会遇到需要将矩阵中的某些元素取出并且单独进行计算的步骤(例如MLE,Attention等操作)。那么在 tensorflow 的 Variable 类型中如何做到这一点呢?
首先假设 Variable 是一个一维数组 A:
import numpy as np import tensorflow as tf a = np.array([1, 2, 3, 4, 5, 6, 7, 8]) A = tf.Variable(a)
我们把我们想取出的元素的索引存到 B 中,如果我们只想取出数组 A 中的某一个元素,则 B 的设定为:
b = np.array([3]) B = tf.placeholder(dtype=tf.int32, shape=[1])
由于我们的索引坐标只有一维,所以 shape=1。
取出元素然后组合成tensor C 的操作如下:
C = tf.gather_nd(A, B)
运行:
init = tf.global_variables_initializer() with tf.Session() as sess: init.run() feed_dict = {B: b} result = sess.run([C], feed_dict=feed_dict) print result
得到:
[4]
如果我们想取出一维数组中的多个元素,则需要把每一个想取出的元素索引都单独放一行:
b = np.array([[3], [2], [5], [0]]) B = tf.placeholder(dtype=tf.int32, shape=[4, 1])
此时由于我们想要从一维数组中索引 4 个数,所以 shape=[4, 1]
再次运行得到:
[4 3 6 1]
////////////////////////////////////////////////////////////////////////////////////华丽丽的分割线
假设 Variable 是一个二维矩阵 A:
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) A = tf.Variable(a)
首先我们先取出 A 中的一个元素,需要给定该元素的行列坐标,存到 B 中:
b = np.array([2,3]) B = tf.placeholder(dtype=tf.int32, shape=[2])
注意由于我们输入的索引坐标变成了二维,所以shape也变为2。
取出元素然后组合成tensor C:
C = tf.gather_nd(A, B)
运行:
init = tf.global_variables_initializer() with tf.Session() as sess: init.run() feed_dict = {B: b} result = sess.run([C], feed_dict=feed_dict) print result
得到:
[12]
同样的,如果我们想取出二维矩阵中的多个元素,则需要把每一个想取出的元素的索引都单独放一行:
b = np.array([[2, 3], [1, 0], [2, 2], [0, 1]]) B = tf.placeholder(dtype=tf.int32, shape=[4, 2])
此时由于我们想要从二维矩阵中索引出 4 个数,所以 shape=[4, 2]
再次运行得到:
[12 5 11 2]
////////////////////////////////////////////////////////////////////////////////////华丽丽的分割线
推广到 n 维矩阵中:
假设 A 是 Variable 类型的 n 维矩阵,我们想取出矩阵中的 m 个元素,那么首先每个元素的索引坐标要表示成列表的形式:
index = [x1, x2, x3, ..., xn]
其中 xj 代表该元素在 n 维矩阵中第 j 维的位置。
其次每个坐标要单独占索引矩阵的一行:
index_matrix = [[x11, x12, x13, ..., x1n], [x21, x22, x23, ..., x2n], [x31, x32, x33, ..., x3n], ......................................., [xm1, xm2, xm3, ..., xmn]]
最后用 tf.gather_nd() 函数替换即可:
result = tf.gather_nd(A, index_matrix)
////////////////////////////////////////////////////////////////////////////////////华丽丽的分割线
[注] 问题出自:https://stackoverflow.com/questions/44793286/slicing-tensorflow-tensor-with-tensor
以上这篇将tensorflow.Variable中的某些元素取出组成一个新的矩阵示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]