torch.max()

1.

torch.max()简单来说是返回一个tensor中的最大值。

例如:

> si=torch.randn(4,5)
> print(si)
tensor([[ 1.1659, -1.5195, 0.0455, 1.7610, -0.2064],
    [-0.3443, 2.0483, 0.6303, 0.9475, 0.4364],
    [-1.5268, -1.0833, 1.6847, 0.0145, -0.2088],
    [-0.8681, 0.1516, -0.7764, 0.8244, -1.2194]])

> print(torch.max(si))
tensor(2.0483)

2.

这个函数的参数中还有一个dim参数,使用方法为re = torch.max(Tensor,dim),返回的re为一个二维向量,其中re[0]为最大值的Tensor,re[1]为最大值对应的index的Tensor。

例如:

> print(torch.max(si,0)[0])
tensor([1.1659, 2.0483, 1.6847, 1.7610, 0.4364])

注意,Tensor的维度从0开始算起。在torch.max()中指定了dim之后,比如对于一个3x4x5的Tensor,指定dim为0后,得到的结果是维度为0的“每一行”对应位置求最大的那个值,此时输出的Tensor的维度是4x5.

对于简单的二维Tensor,如上面例子的这个4x5的Tensor。指定dim为0,则给出的结果是4行做比较之后的最大值;如果指定dim为1,则给出的结果是5列做比较之后的最大值,且此处做比较时是按照位置分别做比较,得到一个新的Tensor。

Tensor.view()

简单说就是一个把tensor 进行reshape的操作。

> a=torch.randn(3,4,5,7)
> b = a.view(1,-1)
> print(b.size())
torch.Size([1, 420])

其中参数-1表示剩下的值的个数一起构成一个维度。如上例中,第一个参数1将第一个维度的大小设定成1,后一个-1就是说第二个维度的大小=元素总数目/第一个维度的大小,此例中为3*4*5*7/1=420.

> d = a.view(a.size(0),a.size(1),-1)
> print(d.size())
torch.Size([3, 4, 35])

 

> e=a.view(4,-1,5)
> print(e.size())
torch.Size([4, 21, 5])

以上这篇pytorch中torch.max和Tensor.view函数用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,torch.max,Tensor.view

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“pytorch中torch.max和Tensor.view函数用法详解”

暂无“pytorch中torch.max和Tensor.view函数用法详解”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。