数据处理

版本1

#数据处理
import os
import torch
from torch.utils import data
from PIL import Image
import numpy as np

#定义自己的数据集合
class DogCat(data.Dataset):

  def __init__(self,root):
    #所有图片的绝对路径
    imgs=os.listdir(root)

    self.imgs=[os.path.join(root,k) for k in imgs]

  def __getitem__(self, index):
    img_path=self.imgs[index]
    #dog-> 1 cat ->0
    label=1 if 'dog' in img_path.split('/')[-1] else 0
    pil_img=Image.open(img_path)
    array=np.asarray(pil_img)
    data=torch.from_numpy(array)
    return data,label

  def __len__(self):
    return len(self.imgs)

dataSet=DogCat('./data/dogcat')

print(dataSet[0])

输出:

( 
( 0 ,.,.) = 
215 203 191 
206 194 182 
211 199 187 
"htmlcode">
#数据处理
import os
import torch
from torch.utils import data
from PIL import Image
import numpy as np
from torchvision import transforms

transform=transforms.Compose([
  transforms.Resize(224), #缩放图片,保持长宽比不变,最短边的长为224像素,
  transforms.CenterCrop(224), #从中间切出 224*224的图片
  transforms.ToTensor(), #将图片转换为Tensor,归一化至[0,1]
  transforms.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5]) #标准化至[-1,1]
])

#定义自己的数据集合
class DogCat(data.Dataset):

  def __init__(self,root):
    #所有图片的绝对路径
    imgs=os.listdir(root)

    self.imgs=[os.path.join(root,k) for k in imgs]
    self.transforms=transform

  def __getitem__(self, index):
    img_path=self.imgs[index]
    #dog-> 1 cat ->0
    label=1 if 'dog' in img_path.split('/')[-1] else 0
    pil_img=Image.open(img_path)
    if self.transforms:
      data=self.transforms(pil_img)
    else:
      pil_img=np.asarray(pil_img)
      data=torch.from_numpy(pil_img)
    return data,label

  def __len__(self):
    return len(self.imgs)

dataSet=DogCat('./data/dogcat')

print(dataSet[0])

输出:

( 
( 0 ,.,.) = 
-0.1765 -0.2627 -0.1686 … -0.0824 -0.2000 -0.2627 
-0.2392 -0.3098 -0.3176 … -0.2863 -0.2078 -0.1765 
-0.3176 -0.2392 -0.2784 … -0.2941 -0.1137 -0.0118 
… "_blank" href="https://github.com/WebLearning17/CommonTool" rel="external nofollow" >https://github.com/WebLearning17/CommonTool

以上这篇pytorch 数据处理:定义自己的数据集合实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,定义,数据,集合

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?