本文实例讲述了python实现的批量分析xml标签中各个类别个数功能。分享给大家供大家参考,具体如下:

文章目录

需要个脚本分析下各个目标的数目 顺带练习下多进程,自用,直接上代码:

# -*- coding: utf-8 -*-
# @Time  : 2019/06/10 18:56
# @Author : TuanZhangSama
import os
import xml.etree.ElementTree as ET
from multiprocessing import Pool,freeze_support,cpu_count
import imghdr
import logging
def get_all_xml_path(xml_dir:str,filter=['.xml']):
  #遍历文件夹下所有xml
  result=[]
  #maindir是当前搜索的目录 subdir是当前目录下的文件夹名 file是目录下文件名
  for maindir,subdir,file_name_list in os.walk(xml_dir):
    for filename in file_name_list:
      ext=os.path.splitext(filename)[1]#返回扩展名
      if ext in filter:
        result.append(os.path.join(maindir,filename))
  return result
def analysis_xml(xml_path:str):
  tree=ET.parse(xml_path)
  root=tree.getroot()
  result_dict={}
  for obj in root.findall('object'):
    obj_name = obj.find('name').text
    obj_num=result_dict.get(obj_name,0)+1
    result_dict[obj_name]=obj_num
  if imghdr.what(xml_path.replace('.xml','.jpg')) != 'jpeg':
    print(xml_path.replace('.xml','.jpg'),'is worng')
    # logging.info(xml_path.replace('.xml','.jpg'))
  if is_valid_jpg(xml_path.replace('.xml','.jpg')):
    pass
  return result_dict
def analysis_xmls_batch(xmls_path_list:list):
  result_list=[]
  for i in xmls_path_list:
    result_list.append(analysis_xml(i))
  return result_list
def collect_result(result_list:list):
  all_result_dict={}
  for result_dict in result_list:
    for key,values in result_dict.items():
      obj_num=all_result_dict.get(key,0)+values
      all_result_dict[key]=obj_num
  return all_result_dict
def main(xml_dir:str,result_save_path:str =None):
  r'''根据xml文件统计所有样本的数目.对于文件不完整的图片和有xml但无图片的样本,直接进行删除.默认跑满所有的cpu核心
  Parameters
  ----------
  xml_dir : str
    xml所在的文件夹.用的递归形式,因此只需保证xml在此目录的子目录下即可.对应的图片和其xml要在同一目录
  result_save_path : str
    分析结果的日志保存路径.默认 None 无日志
  '''
  if result_save_path is not None:
    assert isinstance(result_save_path,str),'{} is illegal path'.format(result_save_path)
  else:
    logging.basicConfig(filename=result_save_path,filemode='w',level=logging.INFO)
  freeze_support()#windows 上用
  xmls_path=get_all_xml_path(xml_dir)
  worker_num=cpu_count()
  print('your CPU num is',cpu_count())
  length=float(len(xmls_path))/float(worker_num)
  #计算下标,尽可能均匀地划分输入文件的列表
  indices=[int(round(i*length)) for i in range(worker_num+1)]
  #生成每个进程要处理的子文件列表
  sublists=[xmls_path[indices[i]:indices[i+1]] for i in range(worker_num)]
  pool=Pool(processes=worker_num)
  all_process_result_list=[]
  for i in range(worker_num):
    all_process_result_list.append(pool.apply_async(analysis_xmls_batch,args=(sublists[i],)))
  pool.close()
  pool.join()
  print('analysis done!')
  _temp_list=[]
  for i in all_process_result_list:
    _temp_list=_temp_list+i.get()
  result=collect_result(_temp_list)
  logging.info(result)
  print(result)
def is_valid_jpg(jpg_file):
  """判断JPG文件下载是否完整   """
  if not os.path.exists(jpg_file):
    print(jpg_file,'is not existes')
    os.remove(jpg_file.replace('.jpg','.xml'))
  with open(jpg_file, 'rb') as fr:
    fr.seek(-2, 2)
    if fr.read() == b'\xff\xd9':
      return True
    else:
      os.remove(jpg_file)
      os.remove(jpg_file.replace('.jpg','.xml'))
      print(jpg_file)
      logging.error(jpg_file,'is imperfect img')
      return False
if __name__=='__main__':
  test_dir='/home/chiebotgpuhq/Share/winshare/origin'
  save_path='/home/chiebotgpuhq/MyCode/python/pytorch/mmdetection-master/result.log'
  main(test_dir,save_path)

PS:这里再为大家提供几款关于xml操作的在线工具供大家参考使用:

在线XML/JSON互相转换工具:
http://tools.jb51.net/code/xmljson

在线格式化XML/在线压缩XML:
http://tools.jb51.net/code/xmlformat

XML在线压缩/格式化工具:
http://tools.jb51.net/code/xml_format_compress

XML代码在线格式化美化工具:
http://tools.jb51.net/code/xmlcodeformat

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python操作xml数据技巧总结》、《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

标签:
python,批量分析,xml,标签,类别个数

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。