本文实例讲述了Python Gluon参数和模块命名操作。分享给大家供大家参考,具体如下:
Gluon参数和模块命名教程
在gluon里,每个参数和块都有一个名字(和前缀)。参数名可以由用户指定,block名也可以由用户指定,也可以自动创建。
本教程中,我们将讨论命名方面的最佳实践。首先,import MXNet和Gluon
from __future__ import print_function import mxnet as mx from mxnet import gluon
Blocks命名
在创建block时,可以指定一个前缀给它:
mydense = gluon.nn.Dense(100, prefix='mydense_') print(mydense.prefix) mydense_
若没有指定前缀,gluon会自动生成一个前缀
dense0 = gluon.nn.Dense(100) print(dense0.prefix) dense0_
当你创建更多同类块时,它们将递增后缀命名,以避免冲突:
dense1 = gluon.nn.Dense(100) print(dense1.prefix) dense1_
参数命名
blocks中的参数将用过将block的前缀添加到参数的名称来命名:
print(dense0.collect_params()) dense0_ ( Parameter dense0_weight (shape=(100, 0), dtype=<type 'numpy.float32'>) Parameter dense0_bias (shape=(100,), dtype=<type 'numpy.float32'>) )
名称空间
为了管理嵌套block的名称,每个块附加有一个name_scope(名称空间)。在name_scope中创建的block都会在其名称前加上父block的名称。
我们将定义一个简单的神经网络来说明这点:
class Model(gluon.Block): def __init__(self, **kwargs): super(Model, self).__init__(**kwargs) with self.name_scope(): self.dense0 = gluon.nn.Dense(20) self.dense1 = gluon.nn.Dense(20) self.mydense = gluon.nn.Dense(20, prefix='mydense_') def forward(self, x): x = mx.nd.relu(self.dense0(x)) x = mx.nd.relu(self.dense1(x)) return mx.nd.relu(self.mydense(x))
现在实例化这个神经网络
- 注意:
model0.dense0
的名称是model0_dense0_
而非dense0_
- 注意:我们指定
model.mydense
的前缀为mydense_
,它的父类前缀会自动生成并添加到前面变成model0_mydense_
这里的名称前缀和变量名model0没有关系,这里就算把model0换成其他变量名比如net,前缀还是model"htmlcode">
model0 = Model() model0.initialize() model0(mx.nd.zeros((1, 20))) print(model0.prefix) print(model0.dense0.prefix) print(model0.dense1.prefix) print(model0.mydense.prefix) model0_ model0_dense0_ model0_dense1_ model0_mydense_若我们再次实例化
Model
,在Dense
前会生成一个不同的名称。
- 注意:
model1.dense0
的名称依然是dense0_
而非dense2_
,遵循之前在model0
中创建的dense层的命名规则。这是因为每个model的命名空间是相互独立model1 = Model() print(model1.prefix) print(model1.dense0.prefix) print(model1.dense1.prefix) print(model1.mydense.prefix) model1_ model1_dense0_ model1_dense1_ model1_mydense_建议手动为顶层的model指定一个前缀,即model = Model(prefix=‘mymodel_'),以避免命名时可能出现的混淆。
相同的规则同样适用于像Sequential这类容器
block.name_scope
既可以在__init__
内使用,也可以在__init__
外使用:注意:这里
Sequential
也有参数prefix,是可以自己指定名称的,不指定的话就叫Sequentialnet = gluon.nn.Sequential() with net.name_scope(): net.add(gluon.nn.Dense(20)) net.add(gluon.nn.Dense(20)) print(net.prefix) print(net[0].prefix) print(net[1].prefix) sequential0_ sequential0_dense0_ sequential0_dense1_
gluon.model_zoo
也一样net = gluon.nn.Sequential() with net.name_scope(): net.add(gluon.model_zoo.vision.alexnet(pretrained=True)) net.add(gluon.model_zoo.vision.alexnet(pretrained=True)) print(net.prefix, net[0].prefix, net[1].prefix) sequential1_ sequential1_alexnet0_ sequential1_alexnet1_保存和载入
由于model0和model1有不同的前缀,所以它们的参数是有不同名字的:
print(model0.collect_params(), '\n') print(model1.collect_params()) model0_ ( Parameter model0_dense0_weight (shape=(20L, 20L), dtype=<type 'numpy.float32'>) Parameter model0_dense0_bias (shape=(20L,), dtype=<type 'numpy.float32'>) Parameter model0_dense1_weight (shape=(20L, 20L), dtype=<type 'numpy.float32'>) Parameter model0_dense1_bias (shape=(20L,), dtype=<type 'numpy.float32'>) Parameter model0_mydense_weight (shape=(20L, 20L), dtype=<type 'numpy.float32'>) Parameter model0_mydense_bias (shape=(20L,), dtype=<type 'numpy.float32'>) ) model1_ ( Parameter model1_dense0_weight (shape=(20, 0), dtype=<type 'numpy.float32'>) Parameter model1_dense0_bias (shape=(20,), dtype=<type 'numpy.float32'>) Parameter model1_dense1_weight (shape=(20, 0), dtype=<type 'numpy.float32'>) Parameter model1_dense1_bias (shape=(20,), dtype=<type 'numpy.float32'>) Parameter model1_mydense_weight (shape=(20, 0), dtype=<type 'numpy.float32'>) Parameter model1_mydense_bias (shape=(20,), dtype=<type 'numpy.float32'>) )若你尝试将model0的参数载入到model1中,你将会得到一个名称不匹配的错误
model0.collect_params().save('model.params') try: model1.collect_params().load('model.params', mx.cpu()) except Exception as e: print(e)Parameter 'model1_dense0_weight' is missing in file 'model.params', which contains parameters: 'model0_mydense_weight', 'model0_dense1_bias', 'model0_dense1_weight', 'model0_dense0_weight', 'model0_dense0_bias', 'model0_mydense_bias'. Please make sure source and target networks have the same prefix.
为了解决这个问题,我们使用
save_parameters
/load_parameters
而不是collect_params
和save
/load. save_parameters
。使用模型结构而非参数名称来匹配参数。model0.save_parameters('model.params') model1.load_parameters('model.params') print(mx.nd.load('model.params').keys()) ['dense0.bias', 'mydense.bias', 'dense1.bias', 'dense1.weight', 'dense0.weight', 'mydense.weight']替换网络中的block并进行fine-turning
有时需要加载一些预训练的模型,并替换其中某些block并进行fine-turning。
For example, the alexnet in model zoo has 1000 output dimensions, but maybe you only have 100 classes in your application.
例如,alexnet有1000个输出维度但你只有100类。
我们首先载入预训练的AlexNet
- 在Gluon Model Zoo,所有图像分类模型的格式都是特征提取层叫
features
,输出层叫output
.- 注意到输出层是一个dense block,有1000个维度的输出
alexnet = gluon.model_zoo.vision.alexnet(pretrained=True) print(alexnet.output) print(alexnet.output.prefix) Dense(4096 -> 1000, linear) alexnet0_dense2_改变输出为100维,使用一个新block替换它
with alexnet.name_scope(): alexnet.output = gluon.nn.Dense(100) alexnet.output.initialize() print(alexnet.output) print(alexnet.output.prefix) Dense(None -> 100, linear) alexnet0_dense3_原文:http://mxnet.incubator.apache.org/versions/master/tutorials/gluon/naming.html
更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]