这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
import gensim, logging, os logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) import nltk corpus = nltk.corpus.brown.sents() fname = 'brown_skipgram.model' if os.path.exists(fname): # load the file if it has already been trained, to save repeating the slow training step below model = gensim.models.Word2Vec.load(fname) else: # can take a few minutes, grab a cuppa model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50) model.save(fname) words = "woman women man girl boy green blue".split() for w1 in words: for w2 in words: print(w1, w2, model.similarity(w1, w2)) print(model.most_similar(positive=['woman', ''], topn=1)) print(model.similarity('woman', 'girl'))girl
在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型
这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型
这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508
当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。
值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。
大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python实现word2Vec model过程解析”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2025年01月07日
2025年01月07日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]