本文实例讲述了Pytorch实现的手写数字mnist识别功能。分享给大家供大家参考,具体如下:
import torch import torchvision as tv import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim import argparse # 定义是否使用GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义网络结构 class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Sequential( #input_size=(1*28*28) nn.Conv2d(1, 6, 5, 1, 2), #padding=2保证输入输出尺寸相同 nn.ReLU(), #input_size=(6*28*28) nn.MaxPool2d(kernel_size=2, stride=2),#output_size=(6*14*14) ) self.conv2 = nn.Sequential( nn.Conv2d(6, 16, 5), nn.ReLU(), #input_size=(16*10*10) nn.MaxPool2d(2, 2) #output_size=(16*5*5) ) self.fc1 = nn.Sequential( nn.Linear(16 * 5 * 5, 120), nn.ReLU() ) self.fc2 = nn.Sequential( nn.Linear(120, 84), nn.ReLU() ) self.fc3 = nn.Linear(84, 10) # 定义前向传播过程,输入为x def forward(self, x): x = self.conv1(x) x = self.conv2(x) # nn.Linear()的输入输出都是维度为一的值,所以要把多维度的tensor展平成一维 x = x.view(x.size()[0], -1) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x #使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多 parser = argparse.ArgumentParser() parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') #模型保存路径 parser.add_argument('--net', default='./model/net.pth', help="path to netG (to continue training)") #模型加载路径 opt = parser.parse_args() # 超参数设置 EPOCH = 8 #遍历数据集次数 BATCH_SIZE = 64 #批处理尺寸(batch_size) LR = 0.001 #学习率 # 定义数据预处理方式 transform = transforms.ToTensor() # 定义训练数据集 trainset = tv.datasets.MNIST( root='./data/', train=True, download=True, transform=transform) # 定义训练批处理数据 trainloader = torch.utils.data.DataLoader( trainset, batch_size=BATCH_SIZE, shuffle=True, ) # 定义测试数据集 testset = tv.datasets.MNIST( root='./data/', train=False, download=True, transform=transform) # 定义测试批处理数据 testloader = torch.utils.data.DataLoader( testset, batch_size=BATCH_SIZE, shuffle=False, ) # 定义损失函数loss function 和优化方式(采用SGD) net = LeNet().to(device) criterion = nn.CrossEntropyLoss() # 交叉熵损失函数,通常用于多分类问题上 optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9) # 训练 if __name__ == "__main__": for epoch in range(EPOCH): sum_loss = 0.0 # 数据读取 for i, data in enumerate(trainloader): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) # 梯度清零 optimizer.zero_grad() # forward + backward outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 每训练100个batch打印一次平均loss sum_loss += loss.item() if i % 100 == 99: print('[%d, %d] loss: %.03f' % (epoch + 1, i + 1, sum_loss / 100)) sum_loss = 0.0 # 每跑完一次epoch测试一下准确率 with torch.no_grad(): correct = 0 total = 0 for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) # 取得分最高的那个类 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('第%d个epoch的识别准确率为:%d%%' % (epoch + 1, (100 * correct / total))) #torch.save(net.state_dict(), '%s/net_%03d.pth' % (opt.outf, epoch + 1))
更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Pytorch实现的手写数字mnist识别功能完整示例”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2025年01月07日
2025年01月07日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]